[2] Ben Farah S., Mokni K., Trimèche K.: 
An $L^p-L^q$-version of Hardy's theorem for spherical Fourier transform on semi-simple Lie groups. Int. J. Math. Math. Sci. 33 (2004), 1757–1769. 
DOI 10.1155/S0161171204209140[3] Cherednik I.: 
A unification of Knizhnik-Zamolodchikov equations and Dunkl operators via affine Hecke algebras. Invent. Math. 106 (1991), 411–432. 
DOI 10.1007/BF01243918 | 
MR 1128220[9] Heckman G.J., Schlichtkrull H.: 
Harmonic Analysis and Special Functions on Symmetric Spaces. Academic Press, San Diego, CA, 1994. 
MR 1313912 | 
Zbl 0836.43001[12] Opdam E.: 
Dunkl Operators for Real and Complex Reflection Groups. MSJ Memoirs, 8, Mathematical Society of Japan, Tokyo, 2000. 
MR 1805058 | 
Zbl 0984.33001[13] Schapira B.: 
Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz spaces, heat kernel. Geom. Funct. Anal. 18 (2008), 222–250. 
DOI 10.1007/s00039-008-0658-7 | 
MR 2399102[15] Trimèche K.: 
Cowling-Price and Hardy theorems on Chébli-Trimèche hypergroups. Glob. J. Pure Appl. Math. 1 (2005), no. 3, 286–305. 
MR 2243232 | 
Zbl 1122.43005[16] Trimèche K.: 
The trigonometric Dunkl intertwining operator and its dual associated with the Cherednik operators and the Heckman-Opdam theory. Adv. Pure Appl. Math. 1 (2010), no. 3, 293–323. 
DOI 10.1515/apam.2010.015 | 
MR 2719369 | 
Zbl 1204.33028