Title:
|
Hardy and Cowling-Price theorems for a Cherednik type operator on the real line (English) |
Author:
|
Mourou, Mohamed Ali |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
56 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
7-22 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is aimed to establish Hardy and Cowling-Price type theorems for the Fourier transform tied to a generalized Cherednik operator on the real line. (English) |
Keyword:
|
differential-difference operator |
Keyword:
|
generalized Fourier transform |
Keyword:
|
Hardy and Cowling-Price theorems |
MSC:
|
33C45 |
MSC:
|
43A15 |
MSC:
|
43A32 |
MSC:
|
44A15 |
idZBL:
|
Zbl 06433802 |
idMR:
|
MR3311574 |
DOI:
|
10.14712/1213-7243.015.102 |
. |
Date available:
|
2015-03-10T17:30:55Z |
Last updated:
|
2017-04-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144185 |
. |
Reference:
|
[1] Ben Farah S., Mokni K.: Uncertainty principle and $L^p-L^q$ sufficient pairs on noncompact real symmetric spaces.C.R. Acad. Sci. Paris 336 (2003), 889–892. Zbl 1026.43009, MR 1994589, 10.1016/S1631-073X(03)00220-6 |
Reference:
|
[2] Ben Farah S., Mokni K., Trimèche K.: An $L^p-L^q$-version of Hardy's theorem for spherical Fourier transform on semi-simple Lie groups.Int. J. Math. Math. Sci. 33 (2004), 1757–1769. 10.1155/S0161171204209140 |
Reference:
|
[3] Cherednik I.: A unification of Knizhnik-Zamolodchikov equations and Dunkl operators via affine Hecke algebras.Invent. Math. 106 (1991), 411–432. MR 1128220, 10.1007/BF01243918 |
Reference:
|
[4] Cowling M.G., Price J.F.: Generalisations of Heisenberg's inequality.Lecture Notes in Mathematics, 992, Springer, Berlin, 1983, pp. 443–449. Zbl 0516.43002, MR 0729369, 10.1007/BFb0069174 |
Reference:
|
[5] Eguchi M., Korzumi S., Kumahara K.: An $L^p$ version of the Hardy theorem for the motion group.J. Austral. Math. Soc. Ser. A 68 (2000), 55–67. MR 1727227, 10.1017/S1446788700001579 |
Reference:
|
[6] Fitouhi A.: Heat polynomials for a singular differential operator on $(0,\infty)$.J. Constr. Approx. 5 (1989), 241–270. Zbl 0696.41027, MR 0989675, 10.1007/BF01889609 |
Reference:
|
[7] Gallardo L., Trimèche K.: Positivity of the Jacobi-Cherednik intertwining operator and its dual.Adv. Pure Appl. Math. 1 (2010), no. 2, 163–194. Zbl 1208.47027, MR 2679886, 10.1515/apam.2010.011 |
Reference:
|
[8] Hardy G.H.: A theorem concerning Fourier transform.J. London Math. Soc. 8 (1933), 227–231. 10.1112/jlms/s1-8.3.227 |
Reference:
|
[9] Heckman G.J., Schlichtkrull H.: Harmonic Analysis and Special Functions on Symmetric Spaces.Academic Press, San Diego, CA, 1994. Zbl 0836.43001, MR 1313912 |
Reference:
|
[10] Koornwinder T.H.: A new proof of a Paley-Wiener type theorem for the Jacobi transform.Ark. Mat. 13 (1975), 145–159. Zbl 0303.42022, MR 0374832, 10.1007/BF02386203 |
Reference:
|
[11] Mourou M.A.: Transmutation operators and Paley-Wiener theorem associated with a Cherednik type operator on the real line.Anal. Appl. (Singap.) 8 (2010), no. 4, 387–408. Zbl 1200.42003, MR 2726071, 10.1142/S0219530510001692 |
Reference:
|
[12] Opdam E.: Dunkl Operators for Real and Complex Reflection Groups.MSJ Memoirs, 8, Mathematical Society of Japan, Tokyo, 2000. Zbl 0984.33001, MR 1805058 |
Reference:
|
[13] Schapira B.: Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz spaces, heat kernel.Geom. Funct. Anal. 18 (2008), 222–250. MR 2399102, 10.1007/s00039-008-0658-7 |
Reference:
|
[14] Trimèche K.: Inversion of the Lions transmutation operators using generalized wavelets.Appl. Comput. Harmon. Anal. 4 (1997), 97–112. Zbl 0872.34059, MR 1429682, 10.1006/acha.1996.0206 |
Reference:
|
[15] Trimèche K.: Cowling-Price and Hardy theorems on Chébli-Trimèche hypergroups.Glob. J. Pure Appl. Math. 1 (2005), no. 3, 286–305. Zbl 1122.43005, MR 2243232 |
Reference:
|
[16] Trimèche K.: The trigonometric Dunkl intertwining operator and its dual associated with the Cherednik operators and the Heckman-Opdam theory.Adv. Pure Appl. Math. 1 (2010), no. 3, 293–323. Zbl 1204.33028, MR 2719369, 10.1515/apam.2010.015 |
Reference:
|
[17] Trimèche K.: Harmonic analysis associated with the Cherednik operators and the Heckman-Opdam theory.Adv. Pure Appl. Math. 2 (2011), no. 1, 23–46. Zbl 1207.33024, MR 2769308, 10.1515/apam.2011.022 |
. |