Previous |  Up |  Next

Article

Title: On isometrical extension properties of function spaces (English)
Author: Kato, Hisao
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 1
Year: 2015
Pages: 105-115
Summary lang: English
.
Category: math
.
Summary: In this note, we prove that any “bounded” isometries of separable metric spaces can be represented as restrictions of linear isometries of function spaces $C(Q)$ and $C(\Delta)$, where $Q$ and $\Delta$ denote the Hilbert cube $[0,1]^{\infty}$ and a Cantor set, respectively. (English)
Keyword: linear extension of isometry
Keyword: theorem of Banach and Mazur
Keyword: Hilbert cube
Keyword: Cantor set
MSC: 46B04
MSC: 54C35
MSC: 54H20
idZBL: Zbl 06433809
idMR: MR3311581
DOI: 10.14712/1213-7243.015.109
.
Date available: 2015-03-10T17:40:16Z
Last updated: 2017-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144192
.
Reference: [1] Banach S.: Théories des Opérations Linéaires.Hafner, New York, 1932, p. 185.
Reference: [2] Ikegami Y., Kato H., Ueda A.: Dynamical systems of finite-dimensional metric spaces and zero-dimensional covers.Topology Appl. 160 (2013), 564–574. Zbl 1295.54036, MR 3010364, 10.1016/j.topol.2013.01.010
Reference: [3] Mazur S., Ulam S.: Sur les transformation isométriques d'espace vectoriel normés.C.R. Acad. Sci. Paris 194 (1932), 946–948.
Reference: [4] van Mill J.: Infinite-dimensional Topology: Prerequisites and Introduction.North-Holland, Amsterdam, 1989. Zbl 0663.57001, MR 0977744
Reference: [5] Sierpiński W.: Sur un espace métrique séparable universel.Fund. Math. 33 (1945), 115–122. Zbl 0061.40001, MR 0015451
Reference: [6] Stone M.H.: Applications of the theory of Boolean rings to general topology.Trans. Amer. Math. Soc. 41 (1937), 375–381. Zbl 0017.13502, MR 1501905, 10.1090/S0002-9947-1937-1501905-7
Reference: [7] Urysohn P.: Sur un espace métrique universel.Bull. Sci. Math. 51 (1927), 43–64.
Reference: [8] Uspenskij V.V.: On the group of isometries of the Urysohn universal metric space.Comment. Math. Univ. Carolin. 31 (1990), 181–182. Zbl 0699.54011, MR 1056185
Reference: [9] Uspenskij V.V.: A universal topological group with a countable base.Funct. Anal. Appl. 20 (1986), 86–87. MR 0847156
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-1_9.pdf 233.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo