Title:
|
The $L^p$-Helmholtz projection in finite cylinders (English) |
Author:
|
Nau, Tobias |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
119-134 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this article we prove for $1<p<\infty $ the existence of the $L^p$-Helmholtz projection in finite cylinders $\Omega $. More precisely, $\Omega $ is considered to be given as the Cartesian product of a cube and a bounded domain $V$ having $C^1$-boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in $\Omega $ is solved, which implies existence and a representation of the $L^p$-Helmholtz projection as a Fourier multiplier operator. (English) |
Keyword:
|
Helmholtz projection |
Keyword:
|
Helmholtz decomposition |
Keyword:
|
weak Neumann problem |
Keyword:
|
periodic boundary conditions |
Keyword:
|
finite cylinder |
Keyword:
|
cylindrical space domain |
Keyword:
|
$L^p$-space |
Keyword:
|
operator-valued Fourier multiplier |
Keyword:
|
$\mathcal R$-boundedness |
Keyword:
|
reflection technique |
Keyword:
|
fluid dynamics |
MSC:
|
35J20 |
MSC:
|
35J25 |
MSC:
|
35Q30 |
MSC:
|
42B15 |
MSC:
|
46E40 |
idZBL:
|
Zbl 06433724 |
idMR:
|
MR3336028 |
DOI:
|
10.1007/s10587-015-0163-8 |
. |
Date available:
|
2015-04-01T12:25:50Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144216 |
. |
Reference:
|
[1] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. I. Unique solvability.J. Math. Fluid Mech. 7 (2005), 201-222. Zbl 1070.35020, MR 2177127, 10.1007/s00021-004-0116-8 |
Reference:
|
[2] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. {II}. {$H_\infty$}-calculus.J. Math. Fluid Mech. 7 (2005), 223-260. Zbl 1083.35085, MR 2177128, 10.1007/s00021-004-0117-7 |
Reference:
|
[3] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity.Math. Z. 240 (2002), 311-343. Zbl 1018.47008, MR 1900314, 10.1007/s002090100384 |
Reference:
|
[4] Bernstein, S.: Sur la convergence absolue des séries trigonométriques.C. R. Acad. Sci., Paris 158 French (1914), 1661-1663. |
Reference:
|
[5] Bogovskiĭ, M. E.: Decomposition of {$L_p(\Omega;{\mathbb R}^n)$} into a direct sum of subspaces of solenoidal and potential vector fields.Sov. Math., Dokl. 33 (1986), 161-165 translated from Russian original in Dokl. Akad. Nauk SSSR 286 (1986), 781-786. MR 0828621 |
Reference:
|
[6] Bu, S.: On operator-valued Fourier multipliers.Sci. China, Ser. A 49 (2006), 574-576. Zbl 1160.42305, MR 2250485, 10.1007/s11425-006-0574-y |
Reference:
|
[7] Bu, S., Kim, J.-M.: Operator-valued Fourier multiplier theorems on {$L_p$}-spaces on {$\mathbb T^d$}.Arch. Math. 82 (2004), 404-414. MR 2061447 |
Reference:
|
[8] Denk, R., Hieber, M., Prüss, J.: {$\mathcal R$}-boundedness, Fourier multipliers and problems of elliptic and parabolic type.Mem. Am. Math. Soc. 788 (2003), 114. MR 2006641 |
Reference:
|
[9] Farwig, R.: Weighted {$L^q$}-{H}elmholtz decompositions in infinite cylinders and in infinite layers.Adv. Differ. Equ. 8 (2003), 357-384. Zbl 1038.35068, MR 1948530 |
Reference:
|
[10] Farwig, R., Kozono, H., Sohr, H.: On the Helmholtz decomposition in general unbounded domains.Arch. Math. 88 (2007), 239-248. Zbl 1121.35097, MR 2305602, 10.1007/s00013-006-1910-8 |
Reference:
|
[11] Farwig, R., Myong-Hwan, R.: Resolvent estimates and maximal regularity in weighted {$L^q$}-spaces of the Stokes operator in an infinite cylinder.J. Math. Fluid Mech. 10 (2008), 352-387. Zbl 1162.76322, MR 2430805, 10.1007/s00021-006-0235-5 |
Reference:
|
[12] Farwig, R., Ri, M.-H.: An {$L^q(L^2)$}-theory of the generalized Stokes resolvent system in infinite cylinders.Stud. Math. 178 (2007), 197-216. Zbl 1111.35034, MR 2289354, 10.4064/sm178-3-1 |
Reference:
|
[13] Farwig, R., Ri, M.-H.: Stokes resolvent systems in an infinite cylinder.Math. Nachr. 280 (2007), 1061-1082. Zbl 1131.35055, MR 2334660, 10.1002/mana.200510536 |
Reference:
|
[14] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems.Springer Tracts in Natural Philosophy 38 Springer, New York (1994). Zbl 0949.35004, MR 1284205 |
Reference:
|
[15] Kunstmann, P. C., Weis, L.: Maximal {$L_p$}-regularity for parabolic equations, Fourier multiplier theorems and {$H^\infty$}-functional calculus.Functional Analytic Methods for Evolution Equations Lecture Notes in Math. 1855 Springer, Berlin (2004), 65-311. Zbl 1097.47041, MR 2108959 |
Reference:
|
[16] Nau, T.: $ L^ P$-Theory of Cylindrical Boundary Value Problems.Springer Spektrum Wiesbaden (2012). Zbl 1252.35003, MR 2987207 |
Reference:
|
[17] Ruzhansky, M., Turunen, V.: Pseudo-Differential Operators and Symmetries.Pseudo-Differential Operators. Theory and Applications 2: Background Analysis and Advanced Topics Birkhäuser, Basel (2010). Zbl 1193.35261, MR 2567604 |
Reference:
|
[18] Štrkalj, Ž., Weis, L.: On operator-valued Fourier multiplier theorems.Trans. Am. Math. Soc. 359 (2007), 3529-3547. Zbl 1209.42005, MR 2302504, 10.1090/S0002-9947-07-04417-0 |
. |