Previous |  Up |  Next

Article

Title: Some properties complementary to Brualdi-Li matrices (English)
Author: Wang, Chuanlong
Author: Yong, Xuerong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 1
Year: 2015
Pages: 135-149
Summary lang: English
.
Category: math
.
Summary: In this paper we derive new properties complementary to an $2n \times 2n$ Brualdi-Li tournament matrix $B_{2n}$. We show that $B_{2n}$ has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of $B_{2n}$ is also determined. Related results obtained in previous articles are proven to be corollaries. (English)
Keyword: tournament matrix
Keyword: Brualdi-Li matrix
Keyword: eigenvalue
Keyword: Perron value
MSC: 05C20
MSC: 05C50
MSC: 15A15
idZBL: Zbl 06433725
idMR: MR3336029
DOI: 10.1007/s10587-015-0164-7
.
Date available: 2015-04-01T12:27:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144217
.
Reference: [1] Brauer, A., Gentry, I. C.: Some remarks on tournament matrices.Linear Algebra Appl. 5 (1972), 311-318. Zbl 0246.15012, MR 0304206
Reference: [2] Brauer, A., Gentry, I. C.: On the characteristic roots of tournament matrices.Bull. Am. Math. Soc. 74 (1968), 1133-1135. Zbl 0167.03002, MR 0232784, 10.1090/S0002-9904-1968-12079-8
Reference: [3] Brualdi, R., Li, Q.: Problem 31.Discrete Mathematics 43 (1983), 329-330.
Reference: [4] Davis, P. J.: Circulant Matrices. Pure & Applied Mathematics.John Wiley & Sons New York (1979). MR 0543191
Reference: [5] Friedland, S.: Eigenvalues of almost skew symmetric matrices and tournament matrices.Combinatorial and Graph-Theoretical Problems in Linear Algebra; Proceedings of a workshop held at the University of Minnesota, USA, 1991; IMA Vol. Math. Appl. 50 Springer, New York (1993), 189-206 R. A. Brualdi et al. Zbl 0789.15019, MR 1240964
Reference: [6] Gregory, D. A., Kirkland, S. J.: Singular values of tournament matrices.Electron. J. Linear Algebra (electronic only) 5 (1999), 39-52. Zbl 0915.05085, MR 1668927
Reference: [7] Gregory, D. A., Kirkland, S. J., Shader, B. L.: Pick's inequality and tournaments.Linear Algebra Appl. 186 (1993), 15-36. Zbl 0776.05072, MR 1217195
Reference: [8] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities.Cambridge Mathematical Library Cambridge Univ. Press, Cambridge (1952). Zbl 0047.05302, MR 0046395
Reference: [9] Hemasinha, R., Weaver, J. R., Kirkland, S. J., Stuart, J. L.: Properties of the Brualdi-{L}i tournament matrix.Linear Algebra Appl. 361 (2003), 63-73. Zbl 1017.05074, MR 1955553
Reference: [10] Horn, A.: Doubly stochastic matrices and the diagonal of a rotation matrix.Am. J. Math. 76 (1954), 620-630. Zbl 0055.24601, MR 0063336, 10.2307/2372705
Reference: [11] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press Cambridge (1991). Zbl 0729.15001
Reference: [12] Kirkland, S.: An upper bound on the Perron value of an almost regular tournament matrix.Linear Algebra Appl. 361 (2003), 7-22. Zbl 1019.15004, MR 1955551
Reference: [13] Kirkland, S.: A note on Perron vectors for almost regular tournament matrices.Linear Algebra Appl. 266 (1997), 43-47. Zbl 0901.15011, MR 1473192
Reference: [14] Kirkland, S.: A note on the sequence of Brualdi-{L}i matrices.Linear Algebra Appl. 248 (1996), 233-240. Zbl 0865.15014, MR 1416458, 10.1016/0024-3795(95)00196-4
Reference: [15] Kirkland, S.: On the minimum Perron value for an irreducible tournament matrix.Linear Algebra Appl. 244 (1996), 277-304. Zbl 0860.15016, MR 1403286
Reference: [16] Kirkland, S.: Hypertournament matrices, score vectors and eigenvalues.Linear Multilinear Algebra 30 (1991), 261-274. Zbl 0751.15009, MR 1129183, 10.1080/03081089108818111
Reference: [17] Kirkland, S. J., Shader, B. L.: Tournament matrices with extremal spectral properties.Linear Algebra Appl. 196 (1994), 1-17. Zbl 0790.15021, MR 1273972
Reference: [18] Maybee, J. S., Pullman, N. J.: Tournament matrices and their generalizations. I.Linear Multilinear Algebra 28 (1990), 57-70. Zbl 0714.05041, MR 1077735, 10.1080/03081089008818030
Reference: [19] Mirsky, L.: Inequalities and existence theorems in the theory of matrices.J. Math. Anal. Appl. 9 (1964), 99-118. Zbl 0133.26202, MR 0163918, 10.1016/0022-247X(64)90009-5
Reference: [20] Moon, J. W.: Topics on Tournaments.Holt, Rinehart and Winston New York (1968). Zbl 0191.22701, MR 0256919
Reference: [21] Moon, J. W., Pullman, N. J.: On generalized tournament matrices.SIAM Rev. 12 (1970), 384-399. Zbl 0198.03804, MR 0272644, 10.1137/1012081
Reference: [22] Pólya, G., Szegő, G.: Problems and Theorems in Analysis. II: Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry.Classics in Mathematics Springer, Berlin (1998). Zbl 1024.00003, MR 1492448
Reference: [23] Shader, B. L.: On tournament matrices.Linear Algebra Appl. 162-164 (1992), 335-368. Zbl 0744.15015, MR 1148408
.

Files

Files Size Format View
CzechMathJ_65-2015-1_7.pdf 305.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo