Previous |  Up |  Next

Article

Title: A note on the cubical dimension of new classes of binary trees (English)
Author: Kabyl, Kamal
Author: Berrachedi, Abdelhafid
Author: Sopena, Éric
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 1
Year: 2015
Pages: 151-160
Summary lang: English
.
Category: math
.
Summary: The cubical dimension of a graph $G$ is the smallest dimension of a hypercube into which $G$ is embeddable as a subgraph. The conjecture of Havel (1984) claims that the cubical dimension of every balanced binary tree with $2^n$ vertices, $n\geq 1$, is $n$. The 2-rooted complete binary tree of depth $n$ is obtained from two copies of the complete binary tree of depth $n$ by adding an edge linking their respective roots. In this paper, we determine the cubical dimension of trees obtained by subdividing twice a 2-rooted complete binary tree and prove that every such balanced tree satisfies the conjecture of Havel. (English)
Keyword: cubical dimension
Keyword: embedding
Keyword: Havel's conjecture
Keyword: hypercube
Keyword: tree
MSC: 05C05
MSC: 05C60
idZBL: Zbl 06433726
idMR: MR3336030
DOI: 10.1007/s10587-015-0165-6
.
Date available: 2015-04-01T12:29:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144218
.
Reference: [1] Bezrukov, S., Monien, B., Unger, W., Wechsung, G.: Embedding ladders and caterpillars into the hypercube.Discrete Appl. Math. 83 (1998), 21-29. Zbl 0906.05019, MR 1622961, 10.1016/S0166-218X(97)00101-7
Reference: [2] Chen, C.-C., Chen, R.-J.: Compact embedding of binary trees into hypercubes.Inf. Process. Lett. 54 (1995), 69-72. Zbl 1022.68594, MR 1332424, 10.1016/0020-0190(95)00010-A
Reference: [3] Choudum, S. A., Lavanya, S.: Embedding a subclass of trees into hypercubes.Discrete Math. 311 (2011), 866-871. Zbl 1223.05020, MR 2781631, 10.1016/j.disc.2011.02.011
Reference: [4] Choudum, S. A., Raman, I.: Embedding height balanced trees and Fibonacci trees in hypercubes.J. Appl. Math. Comput. 30 (2009), 39-52. Zbl 1193.68187, MR 2496600, 10.1007/s12190-008-0155-z
Reference: [5] Dvořák, T.: Dense sets and embedding binary trees into hypercubes.Discrete Appl. Math. 155 (2007), 506-514. Zbl 1111.05023, MR 2296871, 10.1016/j.dam.2006.09.003
Reference: [6] Firsov, V. V.: On isometric embedding of a graph into a Boolean cube.Kibernetika 1965 Russian (1965), 95-96 Cybernetics 1 (1965), 112-113. MR 0210614, 10.1007/BF01074705
Reference: [7] Harary, F., Lewinter, M., Widulski, W.: On two-legged caterpillars which span hypercubes.Congr. Numer. 66 (1988), 103-108. Zbl 0692.05023, MR 0992892
Reference: [8] Havel, I.: On Hamiltonian circuits and spanning trees of hypercubes.Čas. Pěst. Mat. 109 (1984), 135-152. Zbl 0544.05057, MR 0744871
Reference: [9] Havel, I., Liebl, P.: Embedding the dichotomic tree into the $n$-cube.Čas. Pěst. Mat. 97 Czech (1972), 201-205. Zbl 0229.05109, MR 0306025
Reference: [10] Havel, I., Morávek, J.: {$B$}-valuations of graphs.Czech. Math. J. 22 (1972), 338-351. Zbl 0247.05148, MR 0294159
Reference: [11] Kobeissi, M., Mollard, M.: Spanning graphs of hypercubes: starlike and double starlike trees.Discrete Math. 244 (2002), 231-239. Zbl 0992.05032, MR 1844035, 10.1016/S0012-365X(01)00086-3
Reference: [12] Nebeský, L.: On cubes and dichotomic trees.Čas. Pěst. Mat. 99 (1974), 164-167. Zbl 0277.05101, MR 0354425
Reference: [13] Nekri, M., Berrachedi, A.: Two new classes of trees embeddable into hypercubes.RAIRO, Oper. Res. 38 (2004), 295-303. Zbl 1114.05023, MR 2178082, 10.1051/ro:2004027
Reference: [14] Wagner, A., Corneil, D. G.: Embedding trees in a hypercube is NP-complete.SIAM J. Comput. 19 (1990), 570-590. Zbl 0698.68054, MR 1041546, 10.1137/0219038
.

Files

Files Size Format View
CzechMathJ_65-2015-1_8.pdf 334.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo