Previous |  Up |  Next

Article

Title: Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator (English)
Author: Pak, Eunmi
Author: de Dios Pérez, Juan
Author: Machado, Carlos J. G.
Author: Woo, Changhwa
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 1
Year: 2015
Pages: 207-218
Summary lang: English
.
Category: math
.
Summary: We study the classifying problem of immersed submanifolds in Hermitian symmetric spaces. Typically in this paper, we deal with real hypersurfaces in a complex two-plane Grassmannian $G_2({\mathbb C}^{m+2})$ which has a remarkable geometric structure as a Hermitian symmetric space of rank 2. In relation to the generalized Tanaka-Webster connection, we consider a new concept of the parallel normal Jacobi operator for real hypersurfaces in $G_2({\mathbb C}^{m+2})$ and prove non-existence of real hypersurfaces in $G_2({\mathbb C}^{m+2})$ with generalized Tanaka-Webster parallel normal Jacobi operator. (English)
Keyword: real hypersurface
Keyword: complex two-plane Grassmannian
Keyword: Hopf hypersurface
Keyword: generalized Tanaka-Webster connection
Keyword: normal Jacobi operator
Keyword: generalized Tanaka-Webster parallel normal Jacobi operator
MSC: 53C15
MSC: 53C40
idZBL: Zbl 06433730
idMR: MR3336034
DOI: 10.1007/s10587-015-0169-2
.
Date available: 2015-04-01T12:35:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144222
.
Reference: [1] Alekseevskij, D. V.: Compact quaternion spaces.Funkts. Anal. Prilozh. 2 (1968), 11-20 Russian. Zbl 0175.19001, MR 0231314
Reference: [2] Berndt, J., Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians.Monatsh. Math. 137 (2002), 87-98. Zbl 1015.53034, MR 1937621, 10.1007/s00605-001-0494-4
Reference: [3] Berndt, J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians.Monatsh. Math. 127 (1999), 1-14. Zbl 0920.53016, MR 1666307, 10.1007/s006050050018
Reference: [4] Cho, J. T.: Levi-parallel hypersurfaces in a complex space form.Tsukuba J. Math. 30 (2006), 329-343. Zbl 1131.53025, MR 2271303, 10.21099/tkbjm/1496165066
Reference: [5] Cho, J. T.: CR structures on real hypersurfaces of a complex space form.Publ. Math. 54 (1999), 473-487. Zbl 0929.53029, MR 1694456
Reference: [6] Pérez, J. de Dios, Jeong, I., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator.Acta Math. Hung. 117 (2007), 201-217. MR 2361601, 10.1007/s10474-007-6091-9
Reference: [7] Pérez, J. de Dios, Suh, Y. J.: Real hypersurfaces of quaternionic projective space satisfying $\nabla_{U_i} R = 0$.Differ. Geom. Appl. 7 (1997), 211-217. MR 1480534, 10.1016/S0926-2245(97)00003-X
Reference: [8] Jeong, I., Kim, H. J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator.Publ. Math. 76 (2010), 203-218. Zbl 1274.53080, MR 2598182
Reference: [9] Jeong, I., Kimura, M., Lee, H., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster Reeb parallel shape operator.Monatsh. Math. 171 (2013), 357-376. Zbl 1277.53049, MR 3090797, 10.1007/s00605-013-0475-4
Reference: [10] Jeong, I., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with $\frak F$-parallel normal Jacobi operator.Kyungpook Math. J. 51 (2011), 395-410. Zbl 1260.53093, MR 2874974, 10.5666/KMJ.2011.51.4.395
Reference: [11] Lee, H., Suh, Y. J.: Real hypersurfaces of type $B$ in complex two-plane Grassmannians related to the Reeb vector.Bull. Korean Math. Soc. 47 (2010), 551-561. Zbl 1206.53064, MR 2666376, 10.4134/BKMS.2010.47.3.551
Reference: [12] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections.Jap. J. Math., new Ser. 2 (1976), 131-190. Zbl 0346.32010, MR 0589931, 10.4099/math1924.2.131
Reference: [13] Tanno, S.: Variational problems on contact Riemannian manifolds.Trans. Am. Math. Soc. 314 (1989), 349-379. Zbl 0677.53043, MR 1000553, 10.1090/S0002-9947-1989-1000553-9
Reference: [14] Webster, S. M.: Pseudo-Hermitian structures on a real hypersurface.J. Differ. Geom. 13 (1978), 25-41. Zbl 0379.53016, MR 0520599, 10.4310/jdg/1214434345
.

Files

Files Size Format View
CzechMathJ_65-2015-1_12.pdf 287.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo