Previous |  Up |  Next

Article

Title: Algebraic connectivity of $k$-connected graphs (English)
Author: Kirkland, Steve
Author: Rocha, Israel
Author: Trevisan, Vilmar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 1
Year: 2015
Pages: 219-236
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a $k$-connected graph with $k \ge 2$. A hinge is a subset of $k$ vertices whose deletion from $G$ yields a disconnected graph. We consider the algebraic connectivity and Fiedler vectors of such graphs, paying special attention to the signs of the entries in Fiedler vectors corresponding to vertices in a hinge, and to vertices in the connected components at a hinge. The results extend those in Fiedler's papers Algebraic connectivity of graphs (1973), A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory (1975), and Kirkland and Fallat's paper Perron Components and Algebraic Connectivity for Weighted Graphs (1998). (English)
Keyword: algebraic connectivity
Keyword: Fiedler vector
MSC: 05C50
MSC: 15A18
idZBL: Zbl 06433731
idMR: MR3336035
DOI: 10.1007/s10587-015-0170-9
.
Date available: 2015-04-01T12:36:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144223
.
Reference: [1] Bapat, R. B., Kirkland, S. J., Pati, S.: The perturbed Laplacian matrix of a graph.Linear Multilinear Algebra 49 (2001), 219-242. Zbl 0984.05056, MR 1888190, 10.1080/03081080108818697
Reference: [2] Bapat, R. B., Lal, A. K., Pati, S.: On algebraic connectivity of graphs with at most two points of articulation in each block.Linear Multilinear Algebra 60 (2012), 415-432. Zbl 1244.05139, MR 2903493, 10.1080/03081087.2011.603727
Reference: [3] Bapat, R. B., Pati, S.: Algebraic connectivity and the characteristic set of a graph.Linear Multilinear Algebra 45 (1998), 247-273. Zbl 0944.05066, MR 1671627, 10.1080/03081089808818590
Reference: [4] Abreu, N. M. M. de: Old and new results on algebraic connectivity of graphs.Linear Algebra Appl. 423 (2007), 53-73. Zbl 1115.05056, MR 2312323, 10.1016/j.laa.2006.08.017
Reference: [5] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.Czech. Math. J. 25 (1975), 619-633. Zbl 0437.15004, MR 0387321
Reference: [6] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007
Reference: [7] Kirkland, S.: Algebraic connectivity.Handbook of Linear Algebra Discrete Mathematics and Its Applications Chapman & Hall/CRC, Boca Raton (2007), 36-1-36-12 L. Hogben et al. MR 3013937
Reference: [8] Kirkland, S., Neumann, M., Shader, B. L.: Characteristic vertices of weighted trees via Perron values.Linear Multilinear Algebra 40 (1996), 311-325. Zbl 0866.05041, MR 1384650, 10.1080/03081089608818448
Reference: [9] Kirkland, S., Fallat, S.: Perron components and algebraic connectivity for weighted graphs.Linear Multilinear Algebra 44 (1998), 131-148. Zbl 0926.05026, MR 1674228, 10.1080/03081089808818554
Reference: [10] Merris, R.: Laplacian matrices of graphs: a survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613
Reference: [11] Nikiforov, V.: The influence of Miroslav Fiedler on spectral graph theory.Linear Algebra Appl. 439 (2013), 818-821. Zbl 1282.05145, MR 3061737
Reference: [12] Pothen, A., Simon, H. D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs.SIAM J. Matrix Anal. Appl. 11 (1990), 430-452. Zbl 0711.65034, MR 1054210, 10.1137/0611030
.

Files

Files Size Format View
CzechMathJ_65-2015-1_13.pdf 334.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo