Previous |  Up |  Next

Article

Title: Congruences for Wolstenholme primes (English)
Author: Meštrović, Romeo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 1
Year: 2015
Pages: 237-253
Summary lang: English
.
Category: math
.
Summary: A prime $p$ is said to be a Wolstenholme prime if it satisfies the congruence ${2p-1\choose p-1} \equiv 1 \pmod {p^4}$. For such a prime $p$, we establish an expression for ${2p-1\choose p-1}\pmod {p^8}$ given in terms of the sums $R_i:=\sum _{k=1}^{p-1}1/k^i$ ($i=1,2,3,4,5,6)$. Further, the expression in this congruence is reduced in terms of the sums $R_i$ ($i=1,3,4,5$). Using this congruence, we prove that for any Wolstenholme prime $p$ we have $$ \left ({2p-1\atop p-1}\right ) \equiv 1 -2p \sum _{k=1}^{p-1}\frac {1}{k} -2p^2\sum _{k=1}^{p-1}\frac {1}{k^2}\pmod {p^7}. $$ Moreover, using a recent result of the author, we prove that a prime $p$ satisfying the above congruence must necessarily be a Wolstenholme prime. Furthermore, applying a technique of Helou and Terjanian, the above congruence is given as an expression involving the Bernoulli numbers. (English)
Keyword: congruence
Keyword: prime power
Keyword: Wolstenholme prime
Keyword: Wolstenholme's theorem
Keyword: Bernoulli number
MSC: 05A10
MSC: 11A07
MSC: 11B65
MSC: 11B68
MSC: 11B75
idZBL: Zbl 06433732
idMR: MR3336036
DOI: 10.1007/s10587-015-0171-8
.
Date available: 2015-04-01T12:38:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144224
.
Reference: [1] Bayat, M.: A generalization of Wolstenholme's theorem.Am. Math. Mon. 104 (1997), 557-560. Zbl 0916.11002, MR 1453658, 10.2307/2975083
Reference: [2] Crandall, R., Dilcher, K., Pomerance, C.: A search for Wieferich and Wilson primes.Math. Comput. 66 (1997), 433-449. Zbl 0854.11002, MR 1372002, 10.1090/S0025-5718-97-00791-6
Reference: [3] Dilcher, K., Skula, L.: A new criterion for the first case of Fermat's last theorem.Math. Comp. 64 (1995), 363-392. Zbl 0817.11022, MR 1248969
Reference: [4] Dilcher, K., Skula, L., Slavutsky, I. Sh.: Bernoulli Numbers. Bibliography (1713-1990).Queen's papers in Pure and Applied Mathematics 87 Queen's University, Kingston (1991), updated on-line version: www.mathstat.dal.ca/ {dilcher/bernoulli.html}. MR 1119305
Reference: [5] Glaisher, J. W. L.: Congruences relating to the sums of products of the first $n$ numbers and to other sums of products.Quart. J. 31 (1900), 1-35.
Reference: [6] Glaisher, J. W. L.: On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus $p^2$ or $p^3$.Quart. J. 31 (1900), 321-353.
Reference: [7] Granville, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers.J. Borwein, et al. Organic Mathematics Proc. of the workshop. Burnaby, 1995. CMS Conf. Proc. 20, American Mathematical Society, Providence (1997), 253-276. Zbl 0903.11005, MR 1483922
Reference: [8] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers.Clarendon Press Oxford (1979). Zbl 0423.10001, MR 0568909
Reference: [9] Helou, C., Terjanian, G.: On Wolstenholme's theorem and its converse.J. Number Theory 128 (2008), 475-499. Zbl 1236.11003, MR 2389852, 10.1016/j.jnt.2007.06.008
Reference: [10] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory.Graduate Texts in Mathematics 84 Springer, New York (1982). Zbl 0482.10001, MR 0661047
Reference: [11] Jacobson, N.: Basic Algebra. I.W. H. Freeman and Company New York (1985). Zbl 0557.16001, MR 0780184
Reference: [12] Jakubec, S.: Note on the congruences $2^{p-1}\equiv 1\pmod {p^2}$, $3^{p-1}\equiv 1\pmod {p^2}$, $5^{p-1}\equiv 1\pmod {p^2}$.Acta Math. Inform. Univ. Ostrav. 6 (1998), 115-120. Zbl 1024.11002, MR 1822520
Reference: [13] Jakubec, S.: Note on Wieferich's congruence for primes $p\equiv 1\pmod{4 }$.Abh. Math. Semin. Univ. Hamb. 68 (1998), 193-197. Zbl 0954.11009, MR 1658393, 10.1007/BF02942562
Reference: [14] Kummer, E. E.: Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen.J. Reine Angew. Math. 41 (1851), 368-372 German.
Reference: [15] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson.Ann. Math. (2) 39 (1938), 350-360. Zbl 0019.00505, MR 1503412
Reference: [16] McIntosh, R. J.: On the converse of Wolstenholme's theorem.Acta Arith. 71 (1995), 381-389. Zbl 0829.11003, MR 1339137, 10.4064/aa-71-4-381-389
Reference: [17] McIntosh, R. J., Roettger, E. L.: A search for Fibonacci-Wieferich and Wolstenholme primes.Math. Comput. 76 (2007), 2087-2094. Zbl 1139.11003, MR 2336284, 10.1090/S0025-5718-07-01955-2
Reference: [18] Meštrović, R.: On the mod $p^7$ determination of ${2p-1\choose p-1}$.Rocky Mt. J. Math. 44 (2014), 633-648; preprint arXiv:1108.1174v1 [math.NT] (2011) . MR 3240517
Reference: [19] Meštrović, R.: Wolstenholme's theorem: its generalizations and extensions in the last hundred and fifty years (1862-2012).preprint arXiv:1111.3057v2 [math.NT] (2011).
Reference: [20] Meštrović, R.: Some Wolstenholme type congruences.Math. Appl., Brno 2 (2013), 35-42. MR 3275598, 10.13164/ma.2013.04
Reference: [21] Ribenboim, P.: 13 Lectures on Fermat's Last Theorem.Springer New York (1979). Zbl 0456.10006, MR 0551363
Reference: [22] Skula, L.: Fermat's last theorem and the Fermat quotients.Comment. Math. Univ. St. Pauli 41 (1992), 35-54. Zbl 0753.11016, MR 1166223
Reference: [23] Wolstenholme, J.: On certain properties of prime numbers.Quart. J. Pure Appl. Math. 5 (1862), 35-39.
Reference: [24] Zhao, J.: Wolstenholme type theorem for multiple harmonic sums.Int. J. Number Theory 4 (2008), 73-106. Zbl 1218.11005, MR 2387917, 10.1142/S1793042108001146
Reference: [25] Zhao, J.: Bernoulli numbers, Wolstenholme's theorem, and $p^5$ variations of Lucas' theorem.J. Number Theory 123 (2007), 18-26. MR 2295427, 10.1016/j.jnt.2006.05.005
Reference: [26] Zhou, X., Cai, T.: A generalization of a curious congruence on harmonic sums.Proc. Am. Math. Soc. 135 (2007), 1329-1333. Zbl 1115.11006, MR 2276641, 10.1090/S0002-9939-06-08777-6
.

Files

Files Size Format View
CzechMathJ_65-2015-1_14.pdf 314.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo