Previous |  Up |  Next

Article

Title: Results on generalized models and singular products of distributions in the Colombeau algebra $\mathcal{G}(\mathbb R)$ (English)
Author: Damyanov, Blagovest
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 2
Year: 2015
Pages: 145-157
Summary lang: English
.
Category: math
.
Summary: Models of singularities given by discontinuous functions or distributions by means of generalized functions of Colombeau have proved useful in many problems posed by physical phenomena. In this paper, we introduce in a systematic way generalized functions that model singularities given by distributions with singular point support. Furthermore, we evaluate various products of such generalized models when the results admit associated distributions. The obtained results follow the idea of a well-known result of Jan Mikusiński on balancing of singular distributional products. (English)
Keyword: Colombeau algebra
Keyword: singular products of distributions
MSC: 46F10
MSC: 46F30
idZBL: Zbl 06433814
idMR: MR3338729
DOI: 10.14712/1213-7243.2015.114
.
Date available: 2015-04-25T16:57:57Z
Last updated: 2017-08-07
Stable URL: http://hdl.handle.net/10338.dmlcz/144237
.
Reference: [1] Colombeau J.-F.: New Generalized Functions and Multiplication of Distributions.North Holland Math. Studies, 84, Amsterdam, 1984. Zbl 0761.46021, MR 0738781
Reference: [2] Damyanov B.: Mikusiński type products of distributions in Colombeau algebra.Indian J. Pure Appl. Math. 32 (2001), 361–375. Zbl 1021.46032, MR 1826763
Reference: [3] Damyanov B.: Modelling and products of singularities in Colombeau algebra $G (R)$.J. Applied Analysis 14 (2008), no.1, 89–102. MR 2444250
Reference: [4] Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R.: Geometric Theory of Generalized Functions with Applications to General Relativity.Kluwer Acad. Publ., Dordrecht, 2001. Zbl 0998.46015, MR 1883263
Reference: [5] Hörmander L.: Analysis of LPD Operators I. Distribution Theory and Fourier Analysis.Springer, Berlin, 1983. MR 0717035
Reference: [6] Korn G.A., Korn T.M.: Mathematical Handbook.McGraw-Hill Book Company, New York, 1968. Zbl 0535.00032, MR 0220560
Reference: [7] Mikusiński J.: On the square of the Dirac delta-distribution.Bull. Acad. Pol. Ser. Sci. Math. Astron. Phys. 43 (1966), 511–513. Zbl 0163.36404, MR 0203392
Reference: [8] Nedeljkov M., Oberguggenberger M.: Ordinary differential equations with delta function terms.Publ. Inst. Math. (Beograd) (N.S.) 91(105) (2012), 125 - 135. MR 2963815, 10.2298/PIM1205125N
Reference: [9] Oberguggenberger M.: Multiplication of Distributions and Applications to PDEs.Longman, Essex, 1992.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-2_3.pdf 247.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo