Previous |  Up |  Next

Article

Title: Universally divergent Fourier series via Landau's extremal functions (English)
Author: Herzog, Gerd
Author: Kunstmann, Peer Chr.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 2
Year: 2015
Pages: 159-168
Summary lang: English
.
Category: math
.
Summary: We prove the existence of functions $f\in A(\mathbb D)$, the Fourier series of which being universally divergent on countable subsets of $\mathbb T = \partial \mathbb D$. The proof is based on a uniform estimate of the Taylor polynomials of Landau's extremal functions on $\mathbb T\setminus\{1\}$. (English)
Keyword: Fourier series
Keyword: universal functions
Keyword: Landau's extremal functions
MSC: 30B30
MSC: 42A16
MSC: 47B38
idZBL: Zbl 06433815
idMR: MR3338730
DOI: 10.14712/1213-7243.2015.115
.
Date available: 2015-04-25T16:59:20Z
Last updated: 2017-08-07
Stable URL: http://hdl.handle.net/10338.dmlcz/144238
.
Reference: [1] Anderson J.M., Clunie J., Pommerenke Ch.: On Bloch functions and normal functions.J. Reine Angew. Math. 270 (1974), 12–37. Zbl 0292.30030, MR 0361090
Reference: [2] Beise H.-P., Müller J.: On the boundary behaviour of Taylor series in Hardy and Bergman spaces.preprint, 2014.
Reference: [3] Bernal-González L.: Lineability of universal divergence of Fourier series.Integral Equations Operator Theory 74 (2012), 271–279. Zbl 1282.47008, MR 2983066, 10.1007/s00020-012-1984-6
Reference: [4] Fejér L.: Über die Koeffizientensumme einer beschränkten und schlichten Potenzreihe.Acta Math. 49 (1926), 183–190. MR 1555240, 10.1007/BF02543853
Reference: [5] Grosse-Erdmann K.-G.: Universal families and hypercyclic operators.Bull. Amer. Math. Soc. (N.S.) 36 (1999), 345–381. Zbl 0933.47003, MR 1685272, 10.1090/S0273-0979-99-00788-0
Reference: [6] Grosse-Erdmann K.-G., Peris Manguillot A.: Linear Chaos.Universitext, Springer, London, 2011. Zbl 1246.47004, MR 2919812
Reference: [7] Kahane J.-P.: Baire's category theorem and trigonometric series.J. Anal. Math. 80 (2000), 143–182. Zbl 0961.42001, MR 1771526, 10.1007/BF02791536
Reference: [8] Katsoprinakis E., Nestoridis V., Papachristodoulos C.: Universality and Cesàro summability.Comput. Methods Funct. Theory 12 (2012), 419–448. Zbl 1262.30071, MR 3058515
Reference: [9] Landau E., Gaier D.: Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie.Springer, Berlin, 1986. Zbl 0601.30001, MR 0869998
Reference: [10] Müller J.: Continuous functions with universally divergent Fourier series on small subsets of the circle.C.R. Math. Acad. Sci. Paris 348 (2010), 1155–1158. Zbl 1204.42008, MR 2738918, 10.1016/j.crma.2010.10.026
Reference: [11] Pogosyan N.B.: Universal Fourier series.Uspekhi Mat. Nauk 38 (1983), 185–186. Zbl 0525.42003, MR 0693740
Reference: [12] Rudin W.: Real and Complex Analysis.McGraw-Hill Book Co., New York, 1987. Zbl 1038.00002, MR 0924157
Reference: [13] Wintner A.: The theorem of Eneström and the extremal functions of Landau-Schur.Math. Scand. 5 (1957), 236–240. Zbl 0081.07103, MR 0098192
Reference: [14] Zygmund A.: Trigonometric Series. Vol. I, II.Cambridge University Press, Cambridge, 2002. MR 1963498
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-2_4.pdf 226.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo