Previous |  Up |  Next

Article

Title: A new Lindelöf space with points $G_\delta$ (English)
Author: Dow, Alan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 2
Year: 2015
Pages: 223-230
Summary lang: English
.
Category: math
.
Summary: We prove that $\diamondsuit^*$ implies there is a zero-dimensional Hausdorff Lindelöf space of cardinality $2^{\aleph_1}$ which has points $G_\delta$. In addition, this space has the property that it need not be Lindelöf after countably closed forcing. (English)
Keyword: Lindelöf
Keyword: forcing
MSC: 54A25
MSC: 54D20
idZBL: Zbl 06433819
idMR: MR3338734
DOI: 10.14712/1213-7243.2015.119
.
Date available: 2015-04-25T17:05:47Z
Last updated: 2017-08-07
Stable URL: http://hdl.handle.net/10338.dmlcz/144242
.
Reference: [1] Arhangel’skii A.V., Ponomarev, V.I.: Fundamentals of General Topology: Problems and Exercises.Reidel, Dordrecht, 1984. MR 0785749
Reference: [2] Devlin K.J.: Constructibility.Perspectives in Mathematical Logic, Springer, Berlin, 1984; MR 750828 (85k:03001). Zbl 0542.03029, MR 0750828
Reference: [3] Engelking R.: General Topology.translated from the Polish by the author, Monografie Matematyczne, Tom 60 [Mathematical Monographs, Vol. 60], PWN---Polish Scientific Publishers, Warsaw, 1977; MR 0500780 (58 \#18316b). Zbl 0684.54001, MR 0500780
Reference: [4] Gorelic I.: The Baire category and forcing large Lindelöf spaces with points $G_\delta$.Proc. Amer. Math. Soc. 118 (1993), no. 2, 603–607; MR 1132417 (93g:03046). MR 1132417
Reference: [5] Juhász I.: Cardinal functions. II.Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 63–109; MR 776621 (86j:54008). Zbl 0559.54004, MR 0776621
Reference: [6] Juhász I.: Cardinal functions in topology---ten years later.second ed., Mathematical Centre Tracts, vol. 123, Mathematisch Centrum, Amsterdam, 1980; MR 576927 (82a:54002). Zbl 0479.54001, MR 0576927
Reference: [7] Kanamori A.: The higher infinite. Large cardinals in set theory from their beginnings.second ed., Springer Monographs in Mathematics, Springer, Berlin, 2003; MR 1994835 (2004f:03092). Zbl 1154.03033, MR 1994835
Reference: [8] Knight R.W.: A topological application of flat morasses.Fund. Math. 194 (2007), no. 1, 45–66; MR 2291716 (2008d:03048). Zbl 1126.03047, MR 2291716, 10.4064/fm194-1-3
Reference: [9] Kunen K.: Set theory. An introduction to independence proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland, Amsterdam-New York, 1980; MR 597342 (82f:03001). Zbl 0534.03026, MR 0597342
Reference: [10] Tall F.D.: On the cardinality of Lindelöf spaces with points $G_\delta$.Topology Appl. 63 (1995), no. 1, 21–38; MR 1328616 (96i:54016). MR 1328616, 10.1016/0166-8641(95)90002-0
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-2_8.pdf 230.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo