Previous |  Up |  Next

Article

Title: Existence and controllability for nondensely defined partial neutral functional differential inclusions (English)
Author: Ezzinbi, Khalil
Author: Lalaoui Rhali, Soumia
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 3
Year: 2015
Pages: 321-340
Summary lang: English
.
Category: math
.
Summary: We give sufficient conditions for the existence of integral solutions for a class of neutral functional differential inclusions. The assumptions on the generator are reduced by considering nondensely defined Hille-Yosida operators. Existence and controllability results are established by combining the theory of addmissible multivalued contractions and Frigon's fixed point theorem. These results are applied to a neutral partial differential inclusion with diffusion. (English)
Keyword: nondensely operator
Keyword: neutral differential inclusion
Keyword: multivalued map
Keyword: fixed point
Keyword: controllability
Keyword: C$_{0}$-semigroup
MSC: 34A60
MSC: 34K35
MSC: 93B05
idZBL: Zbl 06486914
idMR: MR3419965
DOI: 10.1007/s10492-015-0098-2
.
Date available: 2015-05-15T07:42:42Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144266
.
Reference: [1] Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions.J. Differ. Equations 246 (2009), 3834-3863. Zbl 1171.34052, MR 2514728, 10.1016/j.jde.2009.03.004
Reference: [2] Abada, N., Benchohra, M., Hammouche, H., Ouahab, A.: Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces.Discuss. Math., Differ. Incl. Control Optim. 27 (2007), 329-347. Zbl 1145.34047, MR 2413817, 10.7151/dmdico.1088
Reference: [3] Adimy, M., Ezzinbi, K.: A class of linear partial neutral functional differential equations with nondense domain.J. Differ. Equations 147 (1998), 285-332. Zbl 0915.35109, MR 1633941, 10.1006/jdeq.1998.3446
Reference: [4] Adimy, M., Ezzinbi, K.: Existence and linearized stability for partial neutral functional differential equations with nondense domains.Differ. Equ. Dyn. Syst. 7 (1999), 371-417. Zbl 0983.34075, MR 1862582
Reference: [5] Belmekki, M., Benchohra, M., Ezzinbi, K., Ntouyas, S.: Existence results for semilinear perturbed functional differential equations of neutral type with infinite delay.Mediterr. J. Math. 7 (2010), 1-18. Zbl 1214.34065, MR 2645898, 10.1007/s00009-010-0023-6
Reference: [6] Belmekki, M., Benchohra, M., Górniewicz, L., Ntouyas, S. K.: Existence results for perturbed semilinear functional differential inclusions with infinite delay.Nonlinear Anal. Forum 13 (2008), 135-156. MR 2808070
Reference: [7] Belmekki, M., Benchohra, M., Ntouyas, S. K.: Existence results for semilinear perturbed functional differential equations with nondensely defined operators.Fixed Point Theory Appl. 2006 (2006), 13 pages, Article ID 43696. Zbl 1150.34592, MR 2270321
Reference: [8] Benchohra, M., Górniewicz, L., Ntouyas, S. K., Ouahab, A.: Controllability results for nondensely defined semilinear functional differential equations.Z. Anal. Anwend. 25 (2006), 311-325. Zbl 1101.93007, MR 2251956, 10.4171/ZAA/1291
Reference: [9] Benchohra, M., Ouahab, A.: Controllability results for functional semilinear differential inclusions in Fréchet spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 61 (2005), 405-423. Zbl 1086.34062, MR 2123084, 10.1016/j.na.2004.12.002
Reference: [10] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions.Lecture Notes in Mathematics 580 Springer, Berlin (1977). Zbl 0346.46038, MR 0467310, 10.1007/BFb0087688
Reference: [11] Prato, G. Da, Sinestrari, E.: Differential operators with non dense domain.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 14 (1987), 285-344. Zbl 0652.34069, MR 0939631
Reference: [12] Frigon, M.: Fixed point results for multivalued contractions on gauge spaces.Set Valued Mappings with Applications in Nonlinear Analysis R. Agarwal et al. Ser. Math. Anal. Appl. 4 Taylor & Francis, London (2002), 175-181. Zbl 1013.47013, MR 1938847
Reference: [13] Hale, J. K.: Partial neutral functional differential equations.Rev. Roum. Math. Pures Appl. 39 (1994), 339-344. Zbl 0817.35119, MR 1317773
Reference: [14] Henderson, J., Ouahab, A.: Existence results for nondensely defined semilinear functional differential inclusions in Fréchet spaces.Electron. J. Qual. Theory Differ. Equ. 2005 (2005), 17 pages. Zbl 1111.34045, MR 2176192
Reference: [15] Hernandez, M. E.: A comment on the papers: Controllability results for functional semilinear differential inclusions in Fréchet spaces and Controllability of impulsive neutral functional differential inclusions with infinite delay.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 2243-2245. Zbl 1290.34077, MR 2311027
Reference: [16] Mahmudov, E. N.: Approximation and Optimization of Discrete and Differential Inclusions.Elsevier Insights Elsevier, Amsterdam (2011). Zbl 1235.65002, MR 3293164
Reference: [17] Mahmudov, E. N., Mastaliyeva, D.: Optimization of neutral functional-differential inclusions.J. Dyn. Control Syst. 21 (2015), 25-46. Zbl 1317.49033, MR 3297939, 10.1007/s10883-014-9215-x
Reference: [18] Mordukhovich, B. S., Wang, L.: Optimal control of neutral functional-differential inclusions.SIAM J. Control Optimization 43 (2004), 111-136. Zbl 1208.49031, MR 2082695, 10.1137/S0363012902420376
Reference: [19] Wu, J.: Theory and Applications of Partial Functional Differential Equations.Applied Mathematical Sciences 119 Springer, New York (1996). Zbl 0870.35116, MR 1415838, 10.1007/978-1-4612-4050-1
Reference: [20] Wu, J., Xia, H.: Self-sustained oscillations in a ring array of coupled lossless transmission lines.J. Differ. Equations 124 (1996), 247-278. Zbl 0840.34080, MR 1368068, 10.1006/jdeq.1996.0009
Reference: [21] Wu, J., Xia, H.: Rotating waves in neutral partial functional differential equations.J. Dyn. Differ. Equations 11 (1999), 209-238. Zbl 0939.35188, MR 1695243, 10.1023/A:1021973228398
.

Files

Files Size Format View
AplMat_60-2015-3_6.pdf 294.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo