Previous |  Up |  Next

Article

Title: The Sturm-Liouville Friedrichs extension (English)
Author: Yao, Siqin
Author: Sun, Jiong
Author: Zettl, Anton
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 3
Year: 2015
Pages: 299-320
Summary lang: English
.
Category: math
.
Summary: The characterization of the domain of the Friedrichs extension as a restriction of the maximal domain is well known. It depends on principal solutions. Here we establish a characterization as an extension of the minimal domain. Our proof is different and closer in spirit to the Friedrichs construction. It starts with the assumption that the minimal operator is bounded below and does not directly use oscillation theory. (English)
Keyword: Sturm-Liouville operator
Keyword: Friedrichs extension
MSC: 34B05
MSC: 34L05
MSC: 47B25
idZBL: Zbl 06486913
idMR: MR3419964
DOI: 10.1007/s10492-015-0097-3
.
Date available: 2015-05-15T07:40:45Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144265
.
Reference: [1] Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendungen auf die Spektralzerlegung von Differentialoperatoren I, II.German Math. Ann. 109 (1934), 465-487 Berichtigung ibid. 110 (1935), 777-779. MR 1512905
Reference: [2] Friedrichs, K.: Über die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewöhnlichen Differentialoperatoren zweiter Ordnung.Math. Ann. German 112 (1936), 1-23. MR 1513033, 10.1007/BF01565401
Reference: [3] Hao, X., Sun, J., Wang, A., Zettl, A.: Characterization of domains of self-adjoint ordinary differential operators II.Result. Math. 61 (2012), 255-281. Zbl 1290.47046, MR 2925120, 10.1007/s00025-011-0096-y
Reference: [4] Hao, X., Sun, J., Zettl, A.: Real-parameter square-integrable solutions and the spectrum of differential operators.J. Math. Anal. Appl. 376 (2011), 696-712. Zbl 1210.47087, MR 2747790, 10.1016/j.jmaa.2010.11.052
Reference: [5] Kalf, H.: A characterization of the Friedrichs extension of Sturm-Liouville operators.J. Lond. Math. Soc., II. Ser. 17 (1978), 511-521. Zbl 0406.34029, MR 0492493, 10.1112/jlms/s2-17.3.511
Reference: [6] Littlejohn, L. L., Zettl, A.: The Legendre equation and its self-adjoint operators.Electron. J. Differ. Equ. (electronic only) 2011 (2011), 33 pages. MR 2821514
Reference: [7] Marletta, M., Zettl, A.: The Friedrichs extension of singular differential operators.J. Differ. Equations 160 (2000), 404-421. Zbl 0954.47012, MR 1736997, 10.1006/jdeq.1999.3685
Reference: [8] Möller, M., Zettl, A.: Semi-boundedness of ordinary differential operators.J. Differ. Equations 115 (1995), 24-49. Zbl 0817.34047, MR 1308603, 10.1006/jdeq.1995.1002
Reference: [9] Naimark, M. A.: Linear Differential Operators. Part II: Linear Differential Operators in Hilbert Space.Frederick Ungar Publishing, New York (1968). Zbl 0227.34020, MR 0262880
Reference: [10] Niessen, H.-D., Zettl, A.: The Friedrichs extension of regular ordinary differential operators.Proc. R. Soc. Edinb., Sect. A 114 (1990), 229-236. Zbl 0712.34020, MR 1055546, 10.1017/S0308210500024409
Reference: [11] Niessen, H.-D., Zettl, A.: Singular Sturm-Liouville problems: The Friedrichs extension and comparison of eigenvalues.Proc. Lond. Math. Soc., III. Ser. 64 (1992), 545-578. Zbl 0768.34015, MR 1152997, 10.1112/plms/s3-64.3.545
Reference: [12] Rellich, F.: Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung.Math. Ann. 122 (1950/51), German 343-368. MR 0043316, 10.1007/BF01342848
Reference: [13] Rosenberger, R.: Characterization of the Friedrichs extension of semi-bounded Sturm-Liouville operators.Fachbereich Mathematik der Technischen Hochschule Darmstadt Dissertation (1984), German. Zbl 0676.47027
Reference: [14] Wang, A., Sun, J., Zettl, A.: Characterization of domains of self-adjoint ordinary differential operators.J. Differ. Equations (2009), 246 1600-1622. Zbl 1169.47033, MR 2488698
Reference: [15] Weidmann, J.: Linear Operators in Hilbert Spaces.Graduate Texts in Mathematics 68 Springer, Berlin (1980). Zbl 0434.47001, MR 0566954
Reference: [16] Zettl, A.: Sturm-Liouville Theory.Mathematical Surveys and Monographs 121 American Mathematical Society, Providence (2005). Zbl 1103.34001, MR 2170950
.

Files

Files Size Format View
AplMat_60-2015-3_5.pdf 305.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo