Previous |  Up |  Next

Article

Title: A spectral bound for graph irregularity (English)
Author: Goldberg, Felix
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 375-379
Summary lang: English
.
Category: math
.
Summary: The imbalance of an edge $e=\{u,v\}$ in a graph is defined as $i(e)=|d(u)-d(v)|$, where $d(\cdot )$ is the vertex degree. The irregularity $I(G)$ of $G$ is then defined as the sum of imbalances over all edges of $G$. This concept was introduced by Albertson who proved that $I(G) \leq 4n^{3}/27$ (where $n=|V(G)|$) and obtained stronger bounds for bipartite and triangle-free graphs. Since then a number of additional bounds were given by various authors. In this paper we prove a new upper bound, which improves a bound found by Zhou and Luo in 2008. Our bound involves the Laplacian spectral radius $\lambda $. (English)
Keyword: irregularity
Keyword: Laplacian matrix
Keyword: degree
Keyword: Laplacian index
MSC: 05C07
MSC: 05C35
MSC: 05C50
idZBL: Zbl 06486953
idMR: MR3360433
DOI: 10.1007/s10587-015-0182-5
.
Date available: 2015-06-16T17:45:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144276
.
Reference: [1] Abdo, H., Cohen, N., Dimitrov, D.: Bounds and computation of irregularity of a graph.Preprint: http://arxiv.org/abs/1207.4804 (2012).
Reference: [2] Albertson, M. O.: The irregularity of a graph.Ars Comb. 46 (1997), 219-225. Zbl 0933.05073, MR 1470801
Reference: [3] Fath-Tabar, G. H.: Old and new Zagreb indices of graphs.MATCH Commun. Math. Comput. Chem. 65 (2011), 79-84. Zbl 1265.05146, MR 2797217
Reference: [4] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.Czech. Math. J. 25 (1975), 619-633. Zbl 0437.15004, MR 0387321
Reference: [5] Hansen, P., Mélot, H.: Variable neighborhood search for extremal graphs. IX: Bounding the irregularity of a graph.Graphs and Discovery S. Fajtolowicz et al. Proc. DIMACS working group, Piscataway, USA, 2001. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 69, AMS Providence 253-264 (2005). Zbl 1095.05019, MR 2193452
Reference: [6] Henning, M. A., Rautenbach, D.: On the irregularity of bipartite graphs.Discrete Math. 307 (2007), 1467-1472. Zbl 1126.05060, MR 2311120, 10.1016/j.disc.2006.09.038
Reference: [7] Merris, R.: A note on Laplacian graph eigenvalues.Linear Algebra Appl. 285 (1998), 33-35. Zbl 0931.05053, MR 1653479
Reference: [8] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613
Reference: [9] Mohar, B.: Some applications of Laplace eigenvalues of graphs.Graph Symmetry: Algebraic Methods and Applications G. Hahn et al. Proc. NATO Adv. Study Inst., Montréal, Canada, 1996. NATO ASI Ser., Ser. C, Math. Phys. Sci. 497, Kluwer Academic Publishers Dordrecht (1997), 225-275. Zbl 0883.05096, MR 1468791
Reference: [10] Zhou, B., Luo, W.: On irregularity of graphs.Ars Comb. 88 (2008), 55-64. Zbl 1224.05110, MR 2426406
.

Files

Files Size Format View
CzechMathJ_65-2015-2_8.pdf 225.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo