Previous |  Up |  Next

Article

Title: Small discriminants of complex multiplication fields of elliptic curves over finite fields (English)
Author: Shparlinski, Igor E.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 381-388
Summary lang: English
.
Category: math
.
Summary: We obtain a conditional, under the Generalized Riemann Hypothesis, lower bound on the number of distinct elliptic curves $E$ over a prime finite field $\mathbb {F}_p$ of $p$ elements, such that the discriminant $D(E)$ of the quadratic number field containing the endomorphism ring of $E$ over $\mathbb {F}_p$ is small. For almost all primes we also obtain a similar unconditional bound. These lower bounds complement an upper bound of F. Luca and I. E. Shparlinski (2007). (English)
Keyword: elliptic curve
Keyword: complex multiplication field
Keyword: Frobenius discriminant
MSC: 11G20
MSC: 11N32
MSC: 11R11
idZBL: Zbl 06486954
idMR: MR3360434
DOI: 10.1007/s10587-015-0183-4
.
Date available: 2015-06-16T17:46:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144277
.
Reference: [1] Cojocaru, A. C.: Questions about the reductions modulo primes of an elliptic curve.Number Theory; Papers from the 7th Conference of the Canadian Number Theory Association, University of Montreal, Canada, 2002. CRM Proc. Lecture Notes 36 American Mathematical Society, Providence (2004), 61-79 H. Kisilevsky et al. Zbl 1085.11030, MR 2076566
Reference: [2] Cojocaru, A. C., Duke, W.: Reductions of an elliptic curve and their Tate-{S}hafarevich groups.Math. Ann. 329 (2004), 513-534. Zbl 1062.11039, MR 2127988, 10.1007/s00208-004-0517-2
Reference: [3] Cojocaru, A. C., Fouvry, E., Murty, M. R.: The square sieve and the Lang-{T}rotter conjecture.Can. J. Math. 57 (2005), 1155-1177. Zbl 1094.11021, MR 2178556, 10.4153/CJM-2005-045-7
Reference: [4] Iwaniec, H., Kowalski, E.: Analytic Number Theory.Amer. Math. Soc. Colloquium Publications 53 American Mathematical Society, Providence (2004). Zbl 1059.11001, MR 2061214
Reference: [5] Konyagin, S. V., Shparlinski, I. E.: Quadratic non-residues in short intervals.(to appear) in Proc. Amer. Math. Soc.
Reference: [6] H. W. Lenstra, Jr.: Factoring integers with elliptic curves.Ann. Math. (2) 126 (1987), 649-673. Zbl 0629.10006, MR 0916721
Reference: [7] Luca, F., Shparlinski, I. E.: Discriminants of complex multiplication fields of elliptic curves over finite fields.Can. Math. Bull. 50 (2007), 409-417. Zbl 1146.11034, MR 2344175, 10.4153/CMB-2007-039-2
Reference: [8] Montgomery, H. L.: Topics in Multiplicative Number Theory.Lecture Notes in Mathematics 227 Springer, Berlin (1971). Zbl 0216.03501, MR 0337847
Reference: [9] Shparlinski, I. E.: Tate-{S}hafarevich groups and Frobenius fields of reductions of elliptic curves.Q. J. Math. 61 (2010), 255-263. Zbl 1196.11080, MR 2646088, 10.1093/qmath/hap001
Reference: [10] Silverman, J. H.: The Arithmetic of Elliptic Curves.Graduate Texts in Mathematics 106 Springer, New York (2009). Zbl 1194.11005, MR 2514094
.

Files

Files Size Format View
CzechMathJ_65-2015-2_9.pdf 232.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo