Previous |  Up |  Next

Article

Title: Non supercyclic subsets of linear isometries on Banach spaces of analytic functions (English)
Author: Moradi, Abbas
Author: Hedayatian, Karim
Author: Khani Robati, Bahram
Author: Ansari, Mohammad
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 389-397
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a Banach space of analytic functions on the open unit disk and $\Gamma $ a subset of linear isometries on $X$. Sufficient conditions are given for non-supercyclicity of $\Gamma $. In particular, we show that the semigroup of linear isometries on the spaces $S^p$ ($p>1$), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space $H^p$ or the Bergman space $L^{p}_{a}$ ($1<p<\infty $, $p\neq 2$) are not supercyclic. (English)
Keyword: supercyclicity
Keyword: hypercyclic operator
Keyword: semigroup
Keyword: isometry
MSC: 47A16
MSC: 47B33
MSC: 47B38
idZBL: Zbl 06486955
idMR: MR3360435
DOI: 10.1007/s10587-015-0184-3
.
Date available: 2015-06-16T17:48:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144278
.
Reference: [1] Ansari, S. I.: Hypercyclic and cyclic vectors.J. Funct. Anal. 128 (1995), 374-383. Zbl 0853.47013, MR 1319961, 10.1006/jfan.1995.1036
Reference: [2] Bayart, F., Matheron, É.: Dynamics of Linear Operators.Cambridge Tracts in Mathematics 179 Cambridge University Press, Cambridge (2009). Zbl 1187.47001, MR 2533318
Reference: [3] Guerrero, J. Becerra, Rodríguez-Palacios, A.: Transitivity of the norm on Banach spaces.Extr. Math. 17 (2002), 1-58. MR 1914238
Reference: [4] Bonet, J., Lindström, M., Wolf, E.: Isometric weighted composition operators on weighted Banach spaces of type $H^\infty$.Proc. Am. Math. Soc. 136 (2008), 4267-4273. Zbl 1154.47017, MR 2431039, 10.1090/S0002-9939-08-09631-7
Reference: [5] Bourdon, P. S., Feldman, N. S.: Somewhere dense orbits are everywhere dense.Indiana Univ. Math. J. 52 (2003), 811-819. Zbl 1049.47002, MR 1986898, 10.1512/iumj.2003.52.2303
Reference: [6] Conejero, J. A., Müller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic $C_0$-semigroup.J. Funct. Anal. 244 (2007), 342-348. Zbl 1123.47010, MR 2294487, 10.1016/j.jfa.2006.12.008
Reference: [7] Conway, J. B.: Functions of One Complex Variable.Graduate Texts in Mathematics 11 Springer, New York (1978). MR 0503901, 10.1007/978-1-4612-6313-5
Reference: [8] Copson, E. T.: Asymptotic Expansions.Cambridge Tracts in Mathematics and Mathematical Physics 55 Cambridge University Press, New York (1965). Zbl 0123.26001, MR 0168979
Reference: [9] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces. Vol. 2: Vector-valued Function Spaces.Monographs and Surveys in Pure and Applied Mathematics 138 Chapman and Hall/CRC, Boca Raton (2007). MR 2361284
Reference: [10] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces. Vol. 1: Function Spaces.Monographs and Surveys in Pure and Applied Mathematics 129 Chapman and Hall/CRC, Boca Raton (2003). MR 1957004
Reference: [11] Geng, L.-G., Zhou, Z.-H., Dong, X.-T.: Isometric composition operators on weighted Dirichlet-type spaces.J. Inequal. Appl. (electronic only) 2012 (2012), Article No. 23, 6 pages. Zbl 1273.47049, MR 2916341
Reference: [12] Greim, P., Jamison, J. E., Kamińska, A.: Almost transitivity of some function spaces.Math. Proc. Camb. Philos. Soc. 116 (1994), 475-488 corrigendum ibid. 121 191 (1997). MR 1291754, 10.1017/S0305004100072753
Reference: [13] Hornor, W., Jamison, J. E.: Isometries of some Banach spaces of analytic functions.Integral Equations Oper. Theory 41 (2001), 410-425. Zbl 0995.46012, MR 1857800, 10.1007/BF01202102
Reference: [14] Jarosz, K.: Any Banach space has an equivalent norm with trivial isometries.Isr. J. Math. 64 (1988), 49-56. Zbl 0682.46010, MR 0981748, 10.1007/BF02767369
Reference: [15] Kitai, C.: Invariant Closed Sets for Linear Operators.ProQuest LLC, Ann Arbor University of Toronto Toronto, Canada (1982). MR 2632793
Reference: [16] León-Saavedra, F., Müller, V.: Rotations of hypercyclic and supercyclic operators.Integral Equations Oper. Theory 50 (2004), 385-391. Zbl 1079.47013, MR 2104261, 10.1007/s00020-003-1299-8
Reference: [17] Martín, M. J., Vukotić, D.: Isometries of some classical function spaces among the composition operators.Recent Advances in Operator-Related Function Theory, Proc. Conf., Dublin, Ireland, 2004 A. L. Matheson et al. Contemp. Math. 393 American Mathematical Society, Providence (2006), 133-138. Zbl 1121.47018, MR 2198376
Reference: [18] Novinger, W. P., Oberlin, D. M.: Linear isometries of some normed spaces of analytic functions.Can. J. Math. 37 (1985), 62-74. Zbl 0581.46045, MR 0777039, 10.4153/CJM-1985-005-3
Reference: [19] Rolewicz, S.: On orbits of elements.Stud. Math. 32 (1969), 17-22. Zbl 0174.44203, MR 0241956, 10.4064/sm-32-1-17-22
.

Files

Files Size Format View
CzechMathJ_65-2015-2_10.pdf 266.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo