Previous |  Up |  Next

Article

Title: Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids (English)
Author: Tytgat, Romaric
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 399-426
Summary lang: English
.
Category: math
.
Summary: Nous donnons des résultats théoriques sur l'idéal de Macaev et la trace de Dixmier. Ensuite, nous caractérisons les symboles antiholomorphes $\bar {f}$ tels que l'opérateur de Hankel $\smash {H_{\bar f}}$ sur l'espace de Bergman à poids soit dans l'idéal de Macaev et nous donnons la trace de Dixmier. Pour cela, nous regardons le comportement des normes de Schatten $\Cal {S}^{p}$ quand $p$ tend vers $1$ et nous nous appuyons sur le résultat de Engliš et Rochberg sur l'espace de Bergman. Nous parlons aussi des puissances de tels opérateurs. \endgraf \ehyph {\it Abstract}. In this paper, we give theoretical results on Macaev ideal and Dixmier trace. Then we give a characterization of antiholomorphic symbols $\bar {f}$ such that the Hankel operator $\smash {H_{\bar f}}$ on a Bergman weighted space is in an ideal of Macaev and we give the Dixmier trace. For this, we look at the behavior of Schatten's norms $\mathcal {S}^{p}$ when $p$ tends to $1$, using results of Engliš and Rochberg on Bergman space. We also give results on powers of such operators. (English)
Keyword: Hankel operator
Keyword: Dixmier trace
Keyword: Bergman space
MSC: 32A36
MSC: 32A37
MSC: 47B10
MSC: 47B35
idZBL: Zbl 06486956
idMR: MR3360436
DOI: 10.1007/s10587-015-0185-2
.
Date available: 2015-06-16T17:50:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144279
.
Reference: [1] Arazy, J., Fisher, S. D., Peetre, J.: Hankel operators on weighted Bergman spaces.Am. J. Math. 110 (1988), 989-1053. Zbl 0669.47017, MR 0970119, 10.2307/2374685
Reference: [2] Arazy, J., Fisher, S. D., Peetre, J.: Möbius invariant function spaces.J. Reine Angew. Math. 363 (1985), 110-145. Zbl 0566.30042, MR 0814017
Reference: [3] Axler, S.: The Bergman space, the Bloch space, and commutators of multiplication operators.Duke Math. J. 53 (1986), 315-332. Zbl 0633.47014, MR 0850538
Reference: [4] Connes, A.: Noncommutative Geometry.Academic Press San Diego (1994). Zbl 0818.46076, MR 1303779
Reference: [5] Connes, A., Moscovici, H.: The local index formula in noncommutative geometry.Geom. Funct. Anal. 5 (1995), 174-243. Zbl 0960.46048, MR 1334867, 10.1007/BF01895667
Reference: [6] Engliš, M., Guo, K., Zhang, G.: Toeplitz and Hankel operators and Dixmier traces on the unit ball of $\mathbb C^{n}$.Proc. Am. Math. Soc. 137 (2009), 3669-3678. MR 2529873, 10.1090/S0002-9939-09-09331-9
Reference: [7] Engliš, M., Rochberg, R.: The Dixmier trace of Hankel operators on the Bergman space.J. Funct. Anal. 257 (2009), 1445-1479. Zbl 1185.47027, MR 2541276, 10.1016/j.jfa.2009.05.005
Reference: [8] Gohberg, I. C., Kreĭn, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators.Translations of Mathematical Monographs 18 American Mathematical Society, Providence (1969). Zbl 0181.13504, MR 0246142, 10.1090/mmono/018/01
Reference: [9] Li, S.-Y., Russo, B.: Hankel operators in the Dixmier class.C. R. Acad. Sci., Paris, Sér. I, Math. 325 (1997), 21-26. Zbl 0899.47019, MR 1461391, 10.1016/S0764-4442(97)83927-4
Reference: [10] Luecking, D. H.: Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk.J. Funct. Anal. 110 (1992), 247-271. Zbl 0773.47014, MR 1194989, 10.1016/0022-1236(92)90034-G
Reference: [11] Meise, R., Vogt, D.: Introduction to Functional Analysis.Oxford Graduate Texts in Mathematics 2 Clarendon Press, Oxford (1997). Zbl 0924.46002, MR 1483073
Reference: [12] Pavlović, M.: Introduction to Function Spaces on the Disk.Posebna Izdanja Matematički Institut SANU, Belgrade (2004). Zbl 1107.30001, MR 2109650
Reference: [13] Peller, V.: Hankel Operators and Their Applications.Springer Monographs in Mathematics Springer, New York (2003). Zbl 1030.47002, MR 1949210
Reference: [14] Rudin, W.: Real an Complex Analysis.McGraw-Hill Series in Higher Mathematics McGraw-Hill Book Company, New York (1966). MR 0210528
Reference: [15] Seip, K., Youssfi, E. H.: Hankel operators on Fock spaces and related Bergman kernel estimates.J. Geom. Anal. 23 (2013), 170-201. Zbl 1275.47063, MR 3010276, 10.1007/s12220-011-9241-9
Reference: [16] Simon, B.: Trace Ideals and Their Applications.London Mathematical Society Lecture Note Series 35 Cambridge University Press, Cambridge (1979). Zbl 0423.47001, MR 0541149
Reference: [17] Tytgat, R.: Dixmier class of Hankel operators.J. Oper. Theory 72 (2014), 241-256 French. MR 3246989, 10.7900/jot.2012dec19.1987
Reference: [18] Zhu, K.: Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball.New York J. Math. (electronic only) 13 (2007), 299-316. Zbl 1127.47029, MR 2357717
Reference: [19] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics 226 Springer, New York (2005). Zbl 1067.32005, MR 2115155
Reference: [20] Zhu, K.: Analytic Besov spaces.J. Math. Anal. Appl. 157 (1991), 318-336. Zbl 0733.30026, MR 1112319, 10.1016/0022-247X(91)90091-D
Reference: [21] Zhu, K.: Operator Theory in Function Spaces.Pure and Applied Mathematics 139 Marcel Dekker, New York (1990). Zbl 0706.47019, MR 1074007
.

Files

Files Size Format View
CzechMathJ_65-2015-2_11.pdf 338.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo