Title:
|
On solvability of finite groups with some $ss$-supplemented subgroups (English) |
Author:
|
Lu, Jiakuan |
Author:
|
Qiu, Yanyan |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
427-433 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A subgroup $H$ of a finite group $G$ is said to be $ss$-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is $s$-permutable in $K$. In this paper, we first give an example to show that the conjecture in A. A. Heliel's paper (2014) has negative solutions. Next, we prove that a finite group $G$ is solvable if every subgroup of odd prime order of $G$ is $ss$-supplemented in $G$, and that $G$ is solvable if and only if every Sylow subgroup of odd order of $G$ is $ss$-supplemented in $G$. These results improve and extend recent and classical results in the literature. (English) |
Keyword:
|
$ss$-supplemented subgroup |
Keyword:
|
solvable group |
Keyword:
|
supersolvable group |
MSC:
|
20D10 |
MSC:
|
20D20 |
MSC:
|
20D40 |
idZBL:
|
Zbl 06486957 |
idMR:
|
MR3360437 |
DOI:
|
10.1007/s10587-015-0186-1 |
. |
Date available:
|
2015-06-16T17:51:39Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144280 |
. |
Reference:
|
[1] Arad, Z., Ward, M. B.: New criteria for the solvability of finite groups.J. Algebra 77 (1982), 234-246. Zbl 0486.20018, MR 0665175, 10.1016/0021-8693(82)90288-5 |
Reference:
|
[2] Asaad, M., Ramadan, M.: Finite groups whose minimal subgroups are {$c$}-supplemented.Commun. Algebra 36 (2008), 1034-1040. Zbl 1156.20017, MR 2394268, 10.1080/00927870701776805 |
Reference:
|
[3] Ballester-Bolinches, A., Wang, Y., Xiuyun, G.: {$c$}-supplemented subgroups of finite groups.Glasg. Math. J. 42 (2000), 383-389. Zbl 0968.20009, MR 1793807, 10.1017/S001708950003007X |
Reference:
|
[4] Ballester-Bolinches, A., Xiuyun, G.: On complemented subgroups of finite groups.Arch. Math. 72 (1999), 161-166. Zbl 0929.20015, MR 1671273, 10.1007/s000130050317 |
Reference:
|
[5] Doerk, K., Hawkes, T. O.: Finite Soluble Groups.de Gruyter Expositions in Mathematics 4 Walter de Gruyter, Berlin (1992). Zbl 0753.20001, MR 1169099 |
Reference:
|
[6] Gorenstein, D.: Finite Groups.Harper's Series in Modern Mathematics Harper & Row, Publishers, New York (1968). Zbl 0185.05701, MR 0231903 |
Reference:
|
[7] Guo, X., Lu, J.: On $ss$-supplemented subgroups of finite groups and their properties.Glasg. Math. J. 54 (2012), 481-491. Zbl 1256.20018, MR 2965394, 10.1017/S0017089512000079 |
Reference:
|
[8] Guralnick, R. M.: Subgroups of prime power index in a simple group.J. Algebra 81 (1983), 304-311. Zbl 0515.20011, MR 0700286, 10.1016/0021-8693(83)90190-4 |
Reference:
|
[9] Hall, P.: A characteristic property of soluble groups.J. Lond. Math. Soc. 12 (1937), 198-200. Zbl 0016.39204, MR 1575073, 10.1112/jlms/s1-12.2.198 |
Reference:
|
[10] Hall, P.: Complemented groups.J. Lond. Math. Soc. 12 (1937), 201-204. Zbl 0016.39301, MR 1575074, 10.1112/jlms/s1-12.2.201 |
Reference:
|
[11] Heliel, A. A.: A note on $c$-supplemented subgroups of finite groups.Commun. Algebra 42 (2014), 1650-1656. MR 3169659, 10.1080/00927872.2012.747599 |
Reference:
|
[12] Huppert, B.: Endliche Gruppen. I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703 |
Reference:
|
[13] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen.Math. Z. 78 German (1962), 205-221. Zbl 0102.26802, MR 0147527, 10.1007/BF01195169 |
Reference:
|
[14] Li, S., Shen, Z., Liu, J., Liu, X.: The influence of $ss$-quasinormality of some subgroups on the structure of finite groups.J. Algebra 319 (2008), 4275-4287. Zbl 1152.20019, MR 2407900, 10.1016/j.jalgebra.2008.01.030 |
Reference:
|
[15] Li, Y., Li, B.: On minimal weakly $s$-supplemented subgroups of finite groups.J. Algebra Appl. 10 (2011), 811-820. Zbl 1237.20020, MR 2847499, 10.1142/S021949881100494X |
Reference:
|
[16] Lu, J., Guo, X., Li, X.: The influence of minimal subgroups on the structure of finite groups.J. Algebra Appl. 12 (2013), Article No. 1250189, 8 pages. Zbl 1270.20020, MR 3037264 |
Reference:
|
[17] Schmid, P.: Subgroups permutable with all Sylow subgroups.J. Algebra 207 (1998), 285-293. Zbl 0910.20015, MR 1643106, 10.1006/jabr.1998.7429 |
Reference:
|
[18] Wang, Y.: Finite groups with some subgroups of Sylow subgroups $c$-supplemented.J. Algebra 224 (2000), 467-478. Zbl 0953.20010, MR 1739589, 10.1006/jabr.1999.8079 |
. |