Previous |  Up |  Next


Title: Jordan automorphisms of triangular algebras. II (English)
Author: Ahmed, Driss Aiat Hadj
Author: Tribak, Rachid
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 3
Year: 2015
Pages: 265-268
Summary lang: English
Category: math
Summary: We give a sufficient condition under which any Jordan automorphism of a triangular algebra is either an automorphism or an anti-automorphism. (English)
Keyword: triangular algebra
Keyword: Jordan automorphism
Keyword: automorphism
MSC: 15A78
MSC: 16W20
idZBL: Zbl 06486992
idMR: MR3390275
DOI: 10.14712/1213-7243.2015.135
Date available: 2015-07-09T20:38:48Z
Last updated: 2017-10-02
Stable URL:
Reference: [1] Aiat-Hadj A.D., Ben Yakoub L.: Jordan automorphisms, Jordan derivations of generalized triangular matrix algebra.Internat. J. Math. Math. Sci. 13 (2005), 2125–2132. Zbl 1079.16017, MR 2177700
Reference: [2] Benkovič D., Eremita D.: Commuting traces and commutativity preserving maps on triangular algebras.J. Algebra 280 (2004), 797–824. Zbl 1076.16032, MR 2090065, 10.1016/j.jalgebra.2004.06.019
Reference: [3] Benkovič D., Eremita D.: Multiplicative Lie n-derivations of triangular rings.Linear Algebra Appl. 436 (2012), 4223–4240. Zbl 1247.16040, MR 2915278, 10.1016/j.laa.2012.01.022
Reference: [4] Herstein I.N.: Jordan homomorphisms.Trans. Amer. Math. Soc. 81(2) (1956), 331–341. Zbl 0073.02202, MR 0076751, 10.1090/S0002-9947-1956-0076751-6
Reference: [5] Khazal R., Dăscălescu S., Van Wyk L.: Isomorphism of generalized triangular matrix-rings and recovery of tiles.Internat. J. Math. Math. Sci. 9 (2003), 533–538. Zbl 1022.16019, MR 1968340, 10.1155/S0161171203205251


Files Size Format View
CommentatMathUnivCarolRetro_56-2015-3_1.pdf 179.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo