Previous |  Up |  Next

Article

Title: A co-ideal based identity-summand graph of a commutative semiring (English)
Author: Atani, S. Ebrahimi
Author: Hesari, S. Dolati Pish
Author: Khoramdel, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 3
Year: 2015
Pages: 269-285
Summary lang: English
.
Category: math
.
Summary: Let $I$ be a strong co-ideal of a commutative semiring $R$ with identity. Let $\Gamma_{I} (R)$ be a graph with the set of vertices $S_{I} (R) = \{x \in R\setminus I: x + y \in I$ for some $y \in R \setminus I\}$, where two distinct vertices $x$ and $y$ are adjacent if and only if $x + y \in I$. We look at the diameter and girth of this graph. Also we discuss when $\Gamma_{I} (R)$ is bipartite. Moreover, studies are done on the planarity, clique, and chromatic number of this graph. Examples illustrating the results are presented. (English)
Keyword: strong co-ideal
Keyword: $Q$-strong co-ideal
Keyword: identity-summand element
Keyword: identity-summand graph
Keyword: co-ideal based
MSC: 05C62
MSC: 16Y60
idZBL: Zbl 06486993
idMR: MR3390276
DOI: 10.14712/1213-7243.2015.124
.
Date available: 2015-07-09T20:40:24Z
Last updated: 2017-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144344
.
Reference: [1] Anderson D.F., Livingston P.S.: The zero-divisor graph of a commutative ring.J. Algebra 217 (1999), 434–447. Zbl 1035.13004, MR 1700509, 10.1006/jabr.1998.7840
Reference: [2] Akbari S., Maimani H.R., Yassemi S.: When a zero-divisor graph is planar or a complete r-partite graph.J. Algebra 270 (2003), 169–180. Zbl 1032.13014, MR 2016655, 10.1016/S0021-8693(03)00370-3
Reference: [3] Beck I.: Coloring of commutative rings.J. Algebra 116 (1988), 208–226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5
Reference: [4] Bondy J. A., Murty U.S.R.: Graph Theory.Graduate Texts in Mathematics, 244, Springer, New York, 2008. Zbl 1134.05001, MR 2368647
Reference: [5] Ebrahimi Atani S.: The zero-divisor graph with respect to ideals of a commutative semiring.Glas. Mat. 43(63) (2008), 309–320. Zbl 1162.16031, MR 2460702, 10.3336/gm.43.2.06
Reference: [6] Ebrahimi Atani S.: An ideal-based zero-divisor graph of a commutative semiring.Glas. Mat. 44(64) (2009), 141–153. Zbl 1181.16041, MR 2525659, 10.3336/gm.44.1.07
Reference: [7] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M.: Strong co-ideal theory in quotients of semirings.J. Adv. Res. Pure Math. 5(3) (2013), 19–32. MR 3041341
Reference: [8] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M.: The identity-summand graph of commutative semirings.J. Korean Math. Soc. 51 (2014), 189-202. MR 3159324, 10.4134/JKMS.2014.51.1.189
Reference: [9] Dolžan D., Oblak P.: The zero-divisor graphs of rings and semirings.Internat. J. Algebra Comput. 22 (2012), no. 4, 1250033, 20 pp. Zbl 1251.05075, MR 2946298, 10.1142/S0218196712500336
Reference: [10] Golan J.S.: Semirings and Their Applications.Kluwer Academic Publishers, Dordrecht, 1999. Zbl 0947.16034, MR 1746739
Reference: [11] Maimani H.R., Pournaki M.R, Yassemi S.: Zero-divisor graph with respect to an ideal.Comm. Algebra 34 (2006), 923–929. Zbl 1092.13004, MR 2208109, 10.1080/00927870500441858
Reference: [12] Redmond P.: An ideal-based zero-divisor graph of a commutative ring.Comm. Algebra 31 (2003), 4425–4443. Zbl 1020.13001, MR 1995544, 10.1081/AGB-120022801
Reference: [13] Spiroff S., Wickham C.: A zero divisor graph determined by equivalence classes of zero divisors.Comm. Algebra 39 (2011), 2338–2348. Zbl 1225.13007, MR 2821714, 10.1080/00927872.2010.488675
Reference: [14] Wang H.: On rational series and rational language.Theoret. Comput. Sci. 205 (1998), 329–336. MR 1638617, 10.1016/S0304-3975(98)00103-0
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-3_2.pdf 296.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo