Previous |  Up |  Next

Article

Title: Orthosymmetric bilinear map on Riesz spaces (English)
Author: Chil, Elmiloud
Author: Mokaddem, Mohamed
Author: Hassen, Bourokba
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 3
Year: 2015
Pages: 307-317
Summary lang: English
.
Category: math
.
Summary: Let $E$ be a Riesz space, $F$ a Hausdorff topological vector space (t.v.s.). We prove, under a certain separation condition, that any orthosymmetric bilinear map $T:E\times E\rightarrow F$ is automatically symmetric. This generalizes in certain way an earlier result by F. Ben Amor [On orthosymmetric bilinear maps, Positivity 14 (2010), 123--134]. As an application, we show that under a certain separation condition, any orthogonally additive homogeneous polynomial $P : E\rightarrow F$ is linearly represented. This fits in the type of results by Y. Benyamini, S. Lassalle and J.L.G. Llavona [Homogeneous orthogonally additive polynomials on Banach lattices, Bulletin of the London Mathematical Society 38 (2006), no. 3 459--469]. (English)
Keyword: orthosymmetric multilinear map
Keyword: homogeneous polynomial
Keyword: Riesz space
MSC: 06F25
MSC: 46A40
idZBL: Zbl 06486995
idMR: MR3390278
DOI: 10.14712/1213-7243.2015.132
.
Date available: 2015-07-09T20:44:23Z
Last updated: 2017-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144346
.
Reference: [1] Aliprantis C.D., Burkinshaw O.: Positive Operators.Springer, Dordrecht, 2006. Zbl 1098.47001, MR 2262133
Reference: [2] Ben Amor F.: On orthosymmetric bilinear maps.Positivity 14 (2010), 123–134. Zbl 1204.06010, MR 2596468, 10.1007/s11117-009-0009-4
Reference: [3] Benyamini Y., Lassalle S., Llavona J.L.G.: Homogeneous orthogonally additive polynomials on Banach lattices.Bull. London Math. Soc. 38 (2006), no. 3, 459–469. Zbl 1110.46033, MR 2239041, 10.1112/S0024609306018364
Reference: [4] Beukers F., Huijsmans C.B.: Calculus in f-algebras.J. Austral. Math. Soc. Ser. A 37 (1984), no. 1, 110–116. Zbl 0555.06014, MR 0742249, 10.1017/S1446788700021790
Reference: [5] Boulabiar K.: On products in lattice-ordered algebras.J. Austral. Math. Soc. 75 (2003), no. 1, 1435–1442. Zbl 1044.06010, MR 1984624, 10.1017/S1446788700003451
Reference: [6] Bu Q., Buskes G.: Polynomials on Banach lattices and positive tensor products.J. Math. Anal. Appl. 388 (2012), 845–862. MR 2869792, 10.1016/j.jmaa.2011.10.001
Reference: [7] Buskes G., van Rooij A.: Almost $f$-algebras: commutativity and the Cauchy-Schwarz inequality.Positivity 4 (2000), no. 3, 227–231. Zbl 0987.46002, MR 1797125, 10.1023/A:1009826510957
Reference: [8] Carando D., Lassalle S., Zalduendo I.: Orthogonally additive polynomials over C(K) are measures – a short proof.Integral Equations Operator Theory, 56 (2006), no. 4, 597–602. Zbl 1122.46025, MR 2284718, 10.1007/s00020-006-1439-z
Reference: [9] Carando D., Lassalle S., Zalduendo I.: Orthogonally additive holomorphic functions of bounded type over $C(K)$.Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 609–618. Zbl 1217.46028, MR 2720240, 10.1017/S0013091509000248
Reference: [10] Chil E.: Order bounded orthosymmetric bilinear operator.Czechoslovak Math. J. 61 (2011), no. 4, 873–880. Zbl 1249.06048, MR 2886242, 10.1007/s10587-011-0052-8
Reference: [11] Chil E., Meyer M., Mokaddem M.: On orthosymmetric multilinear maps.Positivity (preprint).
Reference: [12] de Pagter B.: $f$-algebras and Orthomorphisms.thesis, Leiden, 1981.
Reference: [13] Ibort A., Linares P., Llavona J.G.: On the representation of orthogonally additive polynomials in $\ell_{p}$.Publ. RIMS Kyoto Univ. 45 (2009), 519–524. Zbl 1247.46037, MR 2510510, 10.2977/prims/1241553128
Reference: [14] Jaramillo J.A., Prieto A., Zalduendo I.: Orthogonally additive holomorphic functions on open subsets of C(K).Rev. Mat. Complut. 25 (2012), no. 1, 31–41. Zbl 1279.46027, MR 2876915, 10.1007/s13163-010-0055-2
Reference: [15] Luxemburg W.A., Zaanen A.C.: Riesz Spaces I.North-Holland, Amsterdam, 1971.
Reference: [16] Meyer-Nieberg P.: Banach Lattices.Springer, Berlin, 1991. Zbl 0743.46015, MR 1128093
Reference: [17] Palazuelos C., Peralta A.M., Villanueva I.: Orthogonally additive polynomials on $C^{*}$-algebras.Quart. J. Math. 59 (2008), 363–374. Zbl 1159.46035, MR 2444066, 10.1093/qmath/ham042
Reference: [18] Perez-García D., Villanueva I.: Orthogonally additive polynomials on space of continuous functions.J. Math. Anal. Appl. 306 (2005), no. 1, 97–105. MR 2132891, 10.1016/j.jmaa.2004.12.036
Reference: [19] Sundaresan K.: Geometry of spaces of homogeneous polynomials on Banach lattices.Applied geometry and discrete mathematics, 571–586, DIMACS Series in Discrete Mathematics and Theoretical computer Science no. 4, Amer. Math. Soc., Providence, RI, 1991. Zbl 0745.46028, MR 1116377
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-3_4.pdf 253.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo