Previous |  Up |  Next

Article

Title: Property $ \bf{(wL)}$ and the reciprocal Dunford-Pettis property in projective tensor products (English)
Author: Ghenciu, Ioana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 3
Year: 2015
Pages: 319-329
Summary lang: English
.
Category: math
.
Summary: A Banach space $X$ has the reciprocal Dunford-Pettis property ($RDPP$) if every completely continuous operator $T$ from $X$ to any Banach space $Y$ is weakly compact. A Banach space $X$ has the $RDPP$ (resp. property $(wL)$) if every $L$-subset of $X^*$ is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product $X \otimes{_\pi} Y$ has property $(wL)$ when $X$ has the $RDPP$, $Y$ has property $(wL)$, and $L(X,Y^*)=K(X,Y^*)$. (English)
Keyword: the reciprocal Dunford-Pettis property
Keyword: property $(wL)$
Keyword: spaces of compact operators
Keyword: weakly precompact sets
MSC: 28B05
MSC: 46B20
MSC: 46B28
idZBL: Zbl 06486996
idMR: MR3390279
DOI: 10.14712/1213-7243.2015.126
.
Date available: 2015-07-09T20:47:20Z
Last updated: 2017-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144347
.
Reference: [1] Albiac F., Kalton N.J.: Topics in Banach Space Theory.Graduate Texts in Mathematics, 233, Springer, New York, NY, USA, 2006. Zbl 1094.46002, MR 2192298
Reference: [2] Ansari S.I.: On Banach spaces $Y$ for which $B(C(\Omega),Y)= K(C(\Omega),Y)$.Pacific J. Math. 169 (1995), 201–218. Zbl 0831.47015, MR 1346253
Reference: [3] Bator E.M.: Remarks on completely continuous operators.Bull. Polish Acad. Sci. Math. 37 (1989), 409–413. Zbl 0767.46010, MR 1101901
Reference: [4] Bator E.M., Lewis P.: Operators having weakly precompact adjoints.Math. Nachr. 157 (2006), 99–103. Zbl 0792.47021, MR 1233050, 10.1002/mana.19921570109
Reference: [5] Bator E.M., Lewis P., Ochoa J.: Evaluation maps, restriction maps, and compactness.Colloq. Math. 78 (1998), 1–17. Zbl 0948.46008, MR 1658115
Reference: [6] Bessaga C., Pelczynski A.: On bases and unconditional convergence of series in Banach spaces.Studia Math. 17 (1958), 151–174. Zbl 0084.09805, MR 0115069
Reference: [7] Bombal F.: On $V^*$ sets and Pelczynski's property $V^*$.Glasgow Math. J. 32 (1990), 109–120. MR 1045091, 10.1017/S0017089500009113
Reference: [8] Bombal F., Villanueva I.: On the Dunford-Pettis property of the tensor product of $C(K)$ spaces.Proc. Amer. Math. Soc. 129 (2001), 1359–1363. Zbl 0983.46023, MR 1712870, 10.1090/S0002-9939-00-05662-8
Reference: [9] Bourgain J.: New Classes of $\mathcal{L}_p$-spaces.Lecture Notes in Math., 889, Springer, Berlin-New York, 1981. MR 0639014
Reference: [10] Bourgain J.: New Banach space properties of the disc algebra and $H^{\infty }$.Acta Math. 152 (1984), 1–2, 148. MR 0736210, 10.1007/BF02392189
Reference: [11] Bourgain J.: $H^{\infty }$ is a Grothendieck space.Studia Math. 75 (1983), 193–216. MR 0722264
Reference: [12] Delbaen F.: Weakly compact operators on the disk algebra.J. Algebra 45 (1977), 284–294. MR 0482222, 10.1016/0021-8693(77)90328-3
Reference: [13] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, Berlin, 1984. MR 0737004
Reference: [14] Diestel J.: A survey of results related to the Dunford-Pettis property.Contemporary Math. 2 (1980), 15–60. Zbl 0571.46013, MR 0621850, 10.1090/conm/002/621850
Reference: [15] Diestel J., Uhl J.J., Jr.: Vector Measures.Math. Surveys 15, American Mathematical Society, Providence, RI, 1977. Zbl 0521.46035, MR 0453964
Reference: [16] Emmanuele G.: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambr. Philos. Soc. 111 (1992), 331–335. MR 1142753, 10.1017/S0305004100075435
Reference: [17] Emmanuele G.: The reciprocal Dunford-Pettis property and projective tensor products.Math. Proc. Cambridge Philos. Soc. 109 (1991), 161–166. MR 1075128, 10.1017/S0305004100069632
Reference: [18] Emmanuele G.: On the containment of $c_0$ in spaces of compact operators.Bull. Sci. Math. 115 (1991), 177–184. MR 1101022
Reference: [19] Emmanuele G.: Dominated operators on $C[0,1]$ and the $(CRP)$.Collect. Math. 41 (1990), 21–25. Zbl 0752.47006, MR 1134442
Reference: [20] Emmanuele G.: A dual characterization of Banach spaces not containing $\ell^1$.Bull. Polish Acad. Sci. Math. 34 (1986), 155–160. MR 0861172
Reference: [21] Emmanuele G., John K.: Uncomplementability of spaces of compact operators in larger spaces of operators.Czechoslovak Math. J. 47 (1997), 19–31. Zbl 0903.46006, MR 1435603, 10.1023/A:1022483919972
Reference: [22] Ghenciu I., Lewis P.: The embeddability of $c_0$ in spaces of operators.Bull. Polish. Acad. Sci. Math. 56 (2008), 239–256. Zbl 1167.46016, MR 2481977, 10.4064/ba56-3-7
Reference: [23] Ghenciu I., Lewis P.: The Dunford-Pettis property, the Gelfand-Phillips property and $(L)$-sets".Colloq. Math. 106 (2006), 311–324. MR 2283818, 10.4064/cm106-2-11
Reference: [24] Ghenciu I., Lewis P.: Almost weakly compact operators.Bull. Polish. Acad. Sci. Math. 54 (2006), 237–256. Zbl 1118.46016, MR 2287199, 10.4064/ba54-3-6
Reference: [25] Grothendieck A.: Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$.Canad. J. Math. 5 (1953), 129–173. Zbl 0050.10902, MR 0058866, 10.4153/CJM-1953-017-4
Reference: [26] Kalton N.: Spaces of compact operators.Math. Ann. 208 (1974), 267–278. Zbl 0266.47038, MR 0341154, 10.1007/BF01432152
Reference: [27] Leavelle T.: Dissertation.UNT.
Reference: [28] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces II.Springer, Berlin-New York, 1979. Zbl 0403.46022, MR 0540367
Reference: [29] Pełczyński A.: On Banach spaces containing $L^1(\mu)$.Studia Math. 30 (1968), 231–246.
Reference: [30] Pełczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Math. Astronom. Phys. 10 (1962), 641–648. Zbl 0107.32504, MR 0149295
Reference: [31] Pełczyński A., Semadeni Z.: Spaces of continuous functions (III).Studia Math. 18 (1959), 211–222. Zbl 0091.27803, MR 0107806
Reference: [32] Pisier G.: Factorization of Linear Operators and Geometry of Banach Spaces.CBMS Regional Conf. Series in Math. 60, American Mathematical Society, Providence, RI, 1986. Zbl 0588.46010, MR 0829919
Reference: [33] Pitt H.R.: A note on bilinear forms.J. London Math. Soc. 11 (1936), 174–180. Zbl 0014.31201, MR 1574344, 10.1112/jlms/s1-11.3.174
Reference: [34] Ryan R.A.: Introduction to Tensor Products of Banach Spaces.Springer, London, 2002. Zbl 1090.46001, MR 1888309
Reference: [35] Saab E., Saab P.: On stability problems of some properties in Banach spaces.in: K. Sarosz (ed.), Function Spaces, Lecture Notes Pure Appl. Math., 136, Dekker, New York 1992, 367–394. Zbl 0787.46022, MR 1152362
Reference: [36] Tzafriri L.: Reflexivity in Banach lattices and their subspaces.J. Functional Analysis 10 (1972), 1–18. Zbl 0234.46013, MR 0358303, 10.1016/0022-1236(72)90054-7
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-3_5.pdf 259.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo