Previous |  Up |  Next

Article

Title: Order boundedness and weak compactness of the set of quasi-measure extensions of a quasi-measure (English)
Author: Lipecki, Zbigniew
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 3
Year: 2015
Pages: 331-345
Summary lang: English
.
Category: math
.
Summary: Let $\mathfrak M$ and $\mathfrak R$ be algebras of subsets of a set $\Omega $ with $\mathfrak M\subset\mathfrak R$, and denote by $E(\mu )$ the set of all quasi-measure extensions of a given quasi-measure $\mu $ on $\mathfrak M$ to $\mathfrak R$. We give some criteria for order boundedness of $E(\mu )$ in $ba(\mathfrak R)$, in the general case as well as for atomic $\mu $. Order boundedness implies weak compactness of $E (\mu )$. We show that the converse implication holds under some assumptions on $\mathfrak M$, $\mathfrak R$ and $\mu $ or $\mu $ alone, but not in general. (English)
Keyword: linear lattice
Keyword: order bounded
Keyword: additive set function
Keyword: quasi-measure
Keyword: atomic
Keyword: extension
Keyword: convex set
Keyword: extreme point
Keyword: weakly compact
MSC: 06F20
MSC: 28A12
MSC: 28A33
MSC: 46A55
MSC: 46B42
idZBL: Zbl 06486997
idMR: MR3390280
DOI: 10.14712/1213-7243.2015.130
.
Date available: 2015-07-09T20:49:08Z
Last updated: 2017-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144348
.
Reference: [1] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, Orlando, 1985. Zbl 1098.47001, MR 0809372
Reference: [2] Alvarez de Araya J.: A Radon–Nikodym theorem for vector and operator valued measures.Pacific J. Math. 29 (1969), 1–10. MR 0245753, 10.2140/pjm.1969.29.1
Reference: [3] Bhaskara Rao K. P. S., Bhaskara Rao M.: Theory of Charges. A Study of Finitely Additive Measures.Academic Press, London, 1983. Zbl 0516.28001, MR 0751777
Reference: [4] Bourbaki N.: Espaces vectoriels topologiques.Chapitres 1 à 5, Springer, Berlin, 2007. Zbl 1106.46003
Reference: [5] Brooks J. K.: Weak compactness in the space of vector measures.Bull. Amer. Math. Soc. 78 (1972), 284–287. Zbl 0241.28011, MR 0324408, 10.1090/S0002-9904-1972-12960-4
Reference: [6] Drewnowski L.: Topological rings of sets, continuous set functions, integration. I.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 269–276. Zbl 0249.28004, MR 0306432
Reference: [7] Hoffmann-Jørgensen J.: Vector measures.Math. Scand. 28 (1971), 5–32. Zbl 0217.38001, MR 0306438
Reference: [8] Lipecki Z.: On compactness and extreme points of some sets of quasi-measures and measures.Manuscripta Math. 86 (1995), 349–365. Zbl 1118.28003, MR 1323797, 10.1007/BF02567999
Reference: [9] Lipecki Z.: On compactness and extreme points of some sets of quasi-measures and measures. II.Manuscripta Math. 89 (1996), 395–406. Zbl 0847.28001, MR 1378601, 10.1007/BF02567525
Reference: [10] Lipecki Z.: Quasi-measures with finitely or countably many extreme extensions.Manuscripta Math. 97 (1998), 469–481. Zbl 0918.28003, MR 1660148, 10.1007/s002290050115
Reference: [11] Lipecki Z.: Cardinality of the set of extreme extensions of a quasi-measure.Manuscripta Math. 104 (2001), 333–341. Zbl 1041.28001, MR 1828879, 10.1007/s002290170031
Reference: [12] Lipecki Z.: The variation of an additive function on a Boolean algebra.Publ. Math. Debrecen 63 (2003), 445–459. Zbl 1064.28005, MR 2018076
Reference: [13] Lipecki Z.: On compactness and extreme points of some sets of quasi-measures and measures. III.Manuscripta Math. 117 (2005), 463–473. Zbl 1092.28002, MR 2163488, 10.1007/s00229-005-0571-4
Reference: [14] Lipecki Z.: On compactness and extreme points of some sets of quasi-measures and measures. IV.Manuscripta Math. 123 (2007), 133–146. Zbl 1118.28003, MR 2306629, 10.1007/s00229-007-0085-3
Reference: [15] Lipecki Z.: Cardinality of some convex sets and of their sets of extreme points.Colloq. Math. 123 (2011), 133–147. Zbl 1223.28002, MR 2794124, 10.4064/cm123-1-10
Reference: [16] Lipecki Z.: Compactness and extreme points of the set of quasi-measure extensions of a quasi-measure.Dissertationes Math. (Rozprawy Mat.) 493 (2013), 59 pp. Zbl 1283.28002, MR 3135305
Reference: [17] Marczewski E.: Measures in almost independent fields.Fund. Math. 38 (1951), 217–229; reprinted in: Marczewski E., Collected Mathematical Papers, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1996, pp. 413–425. Zbl 0045.02303, MR 0047116
Reference: [18] Nygaard O., P oldvere M.: Families of vector measures of uniformly bounded variation.Arch. Math. (Basel) 88 (2007), 57–61. MR 2289601, 10.1007/s00013-006-1859-7
Reference: [19] Plachky D.: Extremal and monogenic additive set functions.Proc. Amer. Math. Soc. 54 (1976), 193–196. Zbl 0285.28005, MR 0419711, 10.1090/S0002-9939-1976-0419711-3
Reference: [20] Wnuk W.: Banach Lattices with Order Continuous Norms.PWN---Polish Sci. Publ., Warszawa, 1999. Zbl 0948.46017
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-3_6.pdf 273.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo