Previous |  Up |  Next

Article

Keywords:
filters; Menger property; Hurewicz property
Summary:
We study the relation between the Hurewicz and Menger properties of filters considered topologically as subspaces of $\mathcal{P}(\omega)$ with the Cantor set topology.
References:
[1] Bartoszyński T., Judah H.: Set Theory. On the Structure of the Real Line. A K Peters, Ltd., Wellesley, MA, 1995, xii+546 pp., ISBN: 1-56881-044-X. MR 1350295
[2] Bartoszyński T., Tsaban B.: Hereditary topological diagonalizations and the Menger-Hurewicz conjectures. Proc. Amer. Math. Soc. 134 (2006), no. 2, 605–615. DOI 10.1090/S0002-9939-05-07997-9 | MR 2176030 | Zbl 1137.54018
[3] Chodounský D., Repovš D., Zdomskyy L.: Mathias forcing and combinatorial covering properties of filters. preprint.
[4] van Douwen Eric K.: The integers and topology. Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR 0776622 | Zbl 0561.54004
[5] Repovš D., Zdomskyy L., Zhang S.: Countable dense homogeneous filters and the Menger covering property. Fundamenta Mathematicae(to appear). MR 3194416
[6] Gerlits J., Nagy Z.: Some properties of C(X). I., Topology Appl. 14 (1982), no. 2, 151–161. DOI 10.1016/0166-8641(82)90065-7 | MR 0667661 | Zbl 0503.54020
[7] Guzmán O., Hrušák M., Martínez-Celis A.: Canjar filters. preprint.
[8] Guzmán O., Hrušák M., Martínez-Celis A.: Canjar filters II. preprint.
[9] Hernández-Gutiérrez R., Hrušák M.: Non-meager $P$-filters are countable dense homogeneous. Colloq. Math. 130 (2013), 281–289. DOI 10.4064/cm130-2-9 | MR 3049068 | Zbl 1272.54020
[10] Hurewicz W.: " Uber Folgen stetiger Funktionen. Fund. Math. 9 (1927) 193–204.
[11] Hrušák M.: Combinatorics of filters and ideals. Set theory and its applications, Contemp. Math., 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29–69. DOI 10.1090/conm/533/10503 | MR 2777744 | Zbl 1239.03030
[12] Just W., Miller A., Scheepers M., Szeptycki Paul J.: The combinatorics of open covers. II. Topology Appl. 73 (1996), no. 3, 241–266. DOI 10.1016/S0166-8641(96)00075-2 | MR 1419798 | Zbl 0870.03021
[13] Kechris A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, 156, Springer, New York, 1995, xviii+402 pp., ISBN: 0-387-94374-9. MR 1321597 | Zbl 0819.04002
[14] Kočinac L.D.R., Scheepers M.: Combinatorics of open covers. VII. Groupability. Fund. Math. 179 (2003), no. 2, 131–155. DOI 10.4064/fm179-2-2 | MR 2029229 | Zbl 1115.91013
[15] Kunen K., Medini A., Zdomskyy L.: Seven characterizations of non-meager P-filters. preprint.
[16] Marciszewski W.: P-filters and hereditary Baire function spaces. Topology Appl. 89 (1998), no. 3, 241–247. DOI 10.1016/S0166-8641(97)00216-2 | MR 1645168 | Zbl 0969.54016
[17] Miller A.W., Tsaban B.: Point-cofinite covers in the Laver model. Proc. Amer. Math. Soc. 138 (2010), no. 9, 3313–3321. DOI 10.1090/S0002-9939-10-10407-9 | MR 2653961 | Zbl 1200.03038
[18] Nyikos P.: The Cantor tree and the Fréchet-Urysohn property. Papers on general topology and related category theory and topological algebra (New York, 1985/1987), 109–123, Ann. New York Acad. Sci., 552, New York Acad. Sci., New York, 1989. MR 1020779 | Zbl 0894.54021
[19] Reznichenko E.A., Sipacheva O.V.: Fréchet-Urysohn-type properties in topological spaces, groups, and locally convex spaces. Vestnik Moskov. Univ. Ser. Mat. Mekh. (3) (1999), 32–38. MR 1711871
[20] Tsaban B.: Menger's and Hurewicz's problems: solutions from `the book' and refinements. Set theory and its applications, Contemp. Math., 533, American Mathematical Society, Providence, RI, 2011, pp. 211–226. DOI 10.1090/conm/533/10509 | MR 2777750 | Zbl 1252.03111
[21] Tsaban B.: Selection principles and special sets of reals. Open Problems in Topology II, edited by Elliott Pearl, Elsevier B.V., Amsterdam, 2007, xii+763 pp., ISBN: 978-0-444-52208-5. MR 2367385
[22] Tsaban B., Zdomskyy L.: Scales, fields, and a problem of Hurewicz. J. Eur. Math. Soc. (JEMS) 10 (2008), no. 3, 837–866. DOI 10.4171/JEMS/132 | MR 2421163 | Zbl 1159.03030
Partner of
EuDML logo