Previous |  Up |  Next

Article

Title: Some observations on filters with properties defined by open covers (English)
Author: Hernández-Gutiérrez, Rodrigo
Author: Szeptycki, Paul J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 3
Year: 2015
Pages: 355-364
Summary lang: English
.
Category: math
.
Summary: We study the relation between the Hurewicz and Menger properties of filters considered topologically as subspaces of $\mathcal{P}(\omega)$ with the Cantor set topology. (English)
Keyword: filters
Keyword: Menger property
Keyword: Hurewicz property
MSC: 54D20
MSC: 54D80
idZBL: Zbl 06486999
idMR: MR3390282
DOI: 10.14712/1213-7243.2015.125
.
Date available: 2015-07-09T20:51:59Z
Last updated: 2017-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144350
.
Reference: [1] Bartoszyński T., Judah H.: Set Theory. On the Structure of the Real Line.A K Peters, Ltd., Wellesley, MA, 1995, xii+546 pp., ISBN: 1-56881-044-X. MR 1350295
Reference: [2] Bartoszyński T., Tsaban B.: Hereditary topological diagonalizations and the Menger-Hurewicz conjectures.Proc. Amer. Math. Soc. 134 (2006), no. 2, 605–615. Zbl 1137.54018, MR 2176030, 10.1090/S0002-9939-05-07997-9
Reference: [3] Chodounský D., Repovš D., Zdomskyy L.: Mathias forcing and combinatorial covering properties of filters.preprint.
Reference: [4] van Douwen Eric K.: The integers and topology.Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. Zbl 0561.54004, MR 0776622
Reference: [5] Repovš D., Zdomskyy L., Zhang S.: Countable dense homogeneous filters and the Menger covering property.Fundamenta Mathematicae(to appear). MR 3194416
Reference: [6] Gerlits J., Nagy Z.: Some properties of C(X).I., Topology Appl. 14 (1982), no. 2, 151–161. Zbl 0503.54020, MR 0667661, 10.1016/0166-8641(82)90065-7
Reference: [7] Guzmán O., Hrušák M., Martínez-Celis A.: Canjar filters.preprint.
Reference: [8] Guzmán O., Hrušák M., Martínez-Celis A.: Canjar filters II.preprint.
Reference: [9] Hernández-Gutiérrez R., Hrušák M.: Non-meager $P$-filters are countable dense homogeneous.Colloq. Math. 130 (2013), 281–289. Zbl 1272.54020, MR 3049068, 10.4064/cm130-2-9
Reference: [10] Hurewicz W.: " Uber Folgen stetiger Funktionen.Fund. Math. 9 (1927) 193–204.
Reference: [11] Hrušák M.: Combinatorics of filters and ideals.Set theory and its applications, Contemp. Math., 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29–69. Zbl 1239.03030, MR 2777744, 10.1090/conm/533/10503
Reference: [12] Just W., Miller A., Scheepers M., Szeptycki Paul J.: The combinatorics of open covers. II..Topology Appl. 73 (1996), no. 3, 241–266. Zbl 0870.03021, MR 1419798, 10.1016/S0166-8641(96)00075-2
Reference: [13] Kechris A.S.: Classical Descriptive Set Theory.Graduate Texts in Mathematics, 156, Springer, New York, 1995, xviii+402 pp., ISBN: 0-387-94374-9. Zbl 0819.04002, MR 1321597
Reference: [14] Kočinac L.D.R., Scheepers M.: Combinatorics of open covers. VII. Groupability.Fund. Math. 179 (2003), no. 2, 131–155. Zbl 1115.91013, MR 2029229, 10.4064/fm179-2-2
Reference: [15] Kunen K., Medini A., Zdomskyy L.: Seven characterizations of non-meager P-filters.preprint.
Reference: [16] Marciszewski W.: P-filters and hereditary Baire function spaces.Topology Appl. 89 (1998), no. 3, 241–247. Zbl 0969.54016, MR 1645168, 10.1016/S0166-8641(97)00216-2
Reference: [17] Miller A.W., Tsaban B.: Point-cofinite covers in the Laver model.Proc. Amer. Math. Soc. 138 (2010), no. 9, 3313–3321. Zbl 1200.03038, MR 2653961, 10.1090/S0002-9939-10-10407-9
Reference: [18] Nyikos P.: The Cantor tree and the Fréchet-Urysohn property.Papers on general topology and related category theory and topological algebra (New York, 1985/1987), 109–123, Ann. New York Acad. Sci., 552, New York Acad. Sci., New York, 1989. Zbl 0894.54021, MR 1020779
Reference: [19] Reznichenko E.A., Sipacheva O.V.: Fréchet-Urysohn-type properties in topological spaces, groups, and locally convex spaces.Vestnik Moskov. Univ. Ser. Mat. Mekh. (3) (1999), 32–38. MR 1711871
Reference: [20] Tsaban B.: Menger's and Hurewicz's problems: solutions from `the book' and refinements.Set theory and its applications, Contemp. Math., 533, American Mathematical Society, Providence, RI, 2011, pp. 211–226. Zbl 1252.03111, MR 2777750, 10.1090/conm/533/10509
Reference: [21] Tsaban B.: Selection principles and special sets of reals.Open Problems in Topology II, edited by Elliott Pearl, Elsevier B.V., Amsterdam, 2007, xii+763 pp., ISBN: 978-0-444-52208-5. MR 2367385
Reference: [22] Tsaban B., Zdomskyy L.: Scales, fields, and a problem of Hurewicz.J. Eur. Math. Soc. (JEMS) 10 (2008), no. 3, 837–866. Zbl 1159.03030, MR 2421163, 10.4171/JEMS/132
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-3_8.pdf 248.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo