Title:
|
Module-valued functors preserving the covering dimension (English) |
Author:
|
Spěvák, Jan |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
56 |
Issue:
|
3 |
Year:
|
2015 |
Pages:
|
377-399 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove a general theorem about preservation of the covering dimension $\operatorname{dim}$ by certain covariant functors that implies, among others, the following concrete results. \begin{enumerate} \item[(i)] If $G$ is a pathwise connected separable metric NSS abelian group and $X$, $Y$ are Tychonoff spaces such that the group-valued function spaces $C_p(X,G)$ and $C_p(Y,G)$ are topologically isomorphic as topological groups, then $\operatorname{dim} X=\operatorname{dim} Y$. \item[(ii)] If free precompact abelian groups of Tychonoff spaces $X$ and $Y$ are topologically isomorphic, then $\operatorname{dim} X=\operatorname{dim} Y$. \item[(iii)] If $R$ is a topological ring with a countable network and the free topological $R$-modules of Tychonoff spaces $X$ and $Y$ are topologically isomorphic, then $\operatorname{dim} X=\operatorname{dim} Y$. \end{enumerate} The classical result of Pestov [The coincidence of the dimensions dim of $l$-equivalent spaces, Soviet Math. Dokl. 26 (1982), no. 2, 380--383] about preservation of the covering dimension by $l$-equivalence immediately follows from item (i) by taking the topological group of real numbers as $G$. (English) |
Keyword:
|
covering dimension |
Keyword:
|
topological group |
Keyword:
|
function space |
Keyword:
|
topology of pointwise convergence |
Keyword:
|
free topological module |
Keyword:
|
$l$-equivalence |
Keyword:
|
$G$-equivalence |
MSC:
|
54H11 |
MSC:
|
54H13 |
idZBL:
|
Zbl 06487001 |
idMR:
|
MR3390284 |
DOI:
|
10.14712/1213-7243.2015.131 |
. |
Date available:
|
2015-07-09T20:54:54Z |
Last updated:
|
2017-10-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144352 |
. |
Reference:
|
[1] Arhangel'skiĭ A.V.: The principle of $\tau $ approximation and a test for equality of dimension of compact Hausdorff spaces.(Russian), Dokl. Akad. Nauk SSSR 252 (1980), no. 4, 777-780. MR 0580830 |
Reference:
|
[2] Dikranjan D., Shakhmatov D., Spěvák J.: NSS and TAP properties in topological groups close to being compact.ArXiv prerpint arXiv:0909.2381v1 [math.GN]. |
Reference:
|
[3] Freyd P.: Abelian Categories. An Introduction to the Theory of Functors.Harper's Series in Modern Mathematics, Harper & Row, New York, 1964, 11+164 pp. Zbl 0121.02103, MR 0166240 |
Reference:
|
[4] Gul'ko S.P.: On uniform homeomorphisms of spaces of continuous functions.(Russian), Trudy Mat. Inst. Steklov. 193 (1992), 82–88; English translation: Proc. Steklov Inst. Math. 193 (1993), 87–93. Zbl 0804.54018, MR 1265990 |
Reference:
|
[5] Joiner Ch.: Free topological groups and dimension.Trans. Amer. Math. Soc. 220 (1976), 401–418. Zbl 0331.54026, MR 0412322, 10.1090/S0002-9947-1976-0412322-X |
Reference:
|
[6] Kelley J.L.: Obshchaya Topologiya.(Russian), [General topology], translated from English by A.V. Arhangel'skiĭ, edited by P.S. Aleksandrov, Izdat. “Nauka”, Moscow, 1968. Zbl 0518.54001, MR 0239550 |
Reference:
|
[7] Krupski M.: Topological dimension of a space is determined by the pointwise topology of its function space.ArXiv prerpint arXiv:1411.1549v1 [math.GN]. |
Reference:
|
[8] Menini C., Orsatti A.: Dualities between categories of topological modules.Comm. Algebra 11 (1983), no. 1, 21–66. Zbl 0507.16028, MR 0687405, 10.1080/00927878308822836 |
Reference:
|
[9] Pavlovskiĭ D.S.: Spaces of continuous functions.(Russian), Dokl. Akad. Nauk SSSR 253 (1980), no. 1, 38–41. MR 0577006 |
Reference:
|
[10] Pestov V.G.: The coincidence of the dimensions dim of $l$-equivalent spaces.Soviet Math. Dokl. 26 (1982), no. 2, 380–383. |
Reference:
|
[11] Shakhmatov D.B.: Baire isomorphisms at the first level and dimension.Topology Appl. 107 (2000), 153–159. Zbl 0960.54024, MR 1783842 |
Reference:
|
[12] Shakhmatov D.B., Spěvák J.: Group-valued continuous functions with the topology of pointwise convergence.Topology Appl. 157 (2010), 1518–1540. Zbl 1195.54040, MR 2610463, 10.1016/j.topol.2009.06.022 |
Reference:
|
[13] Spěvák J.: Finite-valued mappings preserving dimension.Houston J. Math. 31 (2011), no. 1, 327–348. Zbl 1213.54049, MR 2786558 |
Reference:
|
[14] Tkachuk V.V.: Duality with respect to the functor $C_p$ and cardinal invariants of the type of the Souslin number.(Russian), Mat. Zametki 37 (1985), no. 3, 441–451. MR 0790433 |
Reference:
|
[15] Zambahidze L.G.: On relations between dimensional and cardinal functions of spaces imbedded in spaces of a special type.(Russian), Soobshch. Akad. Nauk Gruzin. SSR 100 (1980), no. 3, 557–560. MR 0615246 |
Reference:
|
[16] Zambahidze L.G.: Relations between dimensions of free bases of free topological groups.(Russian), Soobshch. Akad. Nauk Gruzin. SSR 97 (1980), no. 3, 569–572. MR 0581033 |
. |