Previous |  Up |  Next

Article

Title: Reflecting character and pseudocharacter (English)
Author: Junqueira, Lucia R.
Author: Levi, Alberto M. E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 3
Year: 2015
Pages: 365-376
Summary lang: English
.
Category: math
.
Summary: We say that a cardinal function $\phi$ reflects an infinite cardinal $\kappa$, if given a topological space $X$ with $\phi (X) \geq \kappa$, there exists $Y\in [X]^{\leq \kappa}$ with $\phi (Y)\geq \kappa$. We investigate some problems, discussed by Hodel and Vaughan in Reflection theorems for cardinal functions, Topology Appl. 100 (2000), 47--66, and Juhász in Cardinal functions and reflection, Topology Atlas Preprint no. 445, 2000, related to the reflection for the cardinal functions character and pseudocharacter. Among other results, we present some new equivalences with $\mathrm{CH}$. (English)
Keyword: cardinal function
Keyword: character
Keyword: pseudocharacter
Keyword: reflection theorem
Keyword: compact spaces
Keyword: Lindelöf spaces
Keyword: continuum hypothesis
MSC: 54A25
MSC: 54A35
MSC: 54D20
MSC: 54D30
idZBL: Zbl 06487000
idMR: MR3390283
DOI: 10.14712/1213-7243.2015.127
.
Date available: 2015-07-09T20:53:23Z
Last updated: 2017-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144351
.
Reference: [1] Casarrubias-Segura F., Ramírez-Páramo A.: Reflection theorems for some cardinal functions.Topology Proc. 31 (2007), 51–65. Zbl 1144.54003, MR 2363151
Reference: [2] Christodoulou S.: Initially $\kappa$-compact spaces for large $\kappa$.Comment. Math. Univ. Carolin. 40 (1999), no. 2, 319–325. Zbl 0976.54022, MR 1732652
Reference: [3] Dow A.: An introduction to applications of elementary submodels to topology.Topology Proc. 13 (1988), 17–72. Zbl 0696.03024, MR 1031969
Reference: [4] Eckertson F.W.: Images of not Lindelöf spaces and their squares.Topology Appl. 62 (1995), 255–261. Zbl 0861.54002, MR 1326825, 10.1016/0166-8641(94)00051-4
Reference: [5] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [6] Hajnal A., Juhász I.: Having a small weight is determined by the small subspaces.Proc. Amer. Math. Soc. 79 (1980), 657–658. Zbl 0432.54003, MR 0572322, 10.1090/S0002-9939-1980-0572322-2
Reference: [7] Hodel R.E.: Cardinal functions I.Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1–61. Zbl 0559.54003, MR 0776620
Reference: [8] Hodel R.E., Vaughan J.E.: Reflection theorems for cardinal functions.Topology Appl. 100 (2000), 47–66. Zbl 0943.54003, MR 1731704, 10.1016/S0166-8641(99)00056-5
Reference: [9] Jech T.: Set Theory.Springer Monographs in Mathematics, Springer, Berlin, 2003. The third millennium edition, revised and expanded. Zbl 1007.03002, MR 1940513
Reference: [10] Juhász I.: Cardinal functions in topology – ten years later.Mathematical Centre Tracts, 123, Amsterdam, 1980. Zbl 0479.54001, MR 0576927
Reference: [11] Juhász I.: Cardinal functions and reflection.Topology Atlas Preprint no. 445, 2000. MR 0365453
Reference: [12] Juhász I., Koszmider P., Soukup L.: A first countable, initially $\omega_{1}$-compact but non-compact space.Topology Appl. 156 (2009), 1863-1879. Zbl 1168.54003, MR 2519221, 10.1016/j.topol.2009.04.004
Reference: [13] Juhász I., Weiss W.A.R.: On the convergence and character spectra of compact spaces.Fund. Math. 207 (2010), 179–196. Zbl 1198.54003, MR 2586011, 10.4064/fm207-2-6
Reference: [14] Junqueira L.R., Tall F.D.: The topology of elementary submodels.Topology Appl. 82 (1998), 239–266. Zbl 0903.54002, MR 1602479, 10.1016/S0166-8641(97)00075-8
Reference: [15] Junqueira L.R.: Upwards preservation by elementary submodels.Topology Proc. 25 (2000), 225–249. Zbl 1002.54003, MR 1875594
Reference: [16] Stephenson R.M., Jr.: Initially $\kappa$-compact and related spaces.Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 603–632. Zbl 0588.54025, MR 0776632
Reference: [17] Tkačenko M.G.: Chains and cardinals.Soviet Math. Dokl. 19 (1978), 382–385.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-3_9.pdf 257.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo