Previous |  Up |  Next

Article

Title: A subclass of strongly clean rings (English)
Author: Gurgun, Orhan
Author: Ungor, Sait Halicioglu and Burcu
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 23
Issue: 1
Year: 2015
Pages: 13-31
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce a subclass of strongly clean rings. Let $R$ be a ring with identity, $J$ be the Jacobson radical of $R$, and let $J^{\#}$ denote the set of all elements of $R$ which are nilpotent in $R/J$. An element $a\in R$ is called \emph {very $J^{\#}$-clean} provided that there exists an idempotent $e\in R$ such that $ae=ea$ and $a-e$ or $a+e$ is an element of $J^{\#}$. A ring $R$ is said to be \emph {very $J^{\#}$-clean} in case every element in $R$ is very $J^{\#}$-clean. We prove that every very $J^{\#}$-clean ring is strongly $\pi $-rad clean and has stable range one. It is shown that for a commutative local ring $R$, $A(x)\in M_2\big (R[[x]]\big )$ is very $J^{\#}$-clean if and only if $A(0)\in M_2(R)$ is very $J^{\#}$-clean. Various basic characterizations and properties of these rings are proved. We obtain a partial answer to the open question whether strongly clean rings have stable range one. This paper is dedicated to Professor Abdullah Harmanci on his 70th birthday (English)
Keyword: Very $J^{\#}$-clean matrix
Keyword: very $J^{\#}$-clean ring
Keyword: local ring.
MSC: 15A13
MSC: 15B99
MSC: 16L99
idZBL: Zbl 1347.16038
idMR: MR3394075
.
Date available: 2015-08-25T13:56:10Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144356
.
Reference: [1] Agayev, N., Harmanci, A., Halicioglu, S.: On abelian rings.Turk J. Math., 34, 2010, 465-474, Zbl 1210.16037, MR 2721960
Reference: [2] Anderson, D. D., Camillo, V. P.: Commutative rings whose elements are a sum of a unit and idempotent.Comm. Algebra, 30, 7, 2002, 3327-3336, Zbl 1083.13501, MR 1914999, 10.1081/AGB-120004490
Reference: [3] Ara, P.: Strongly $\pi $-regular rings have stable range one.Proc. Amer. Math. Soc., 124, 1996, 3293-3298, Zbl 0865.16007, MR 1343679, 10.1090/S0002-9939-96-03473-9
Reference: [4] Borooah, G., Diesl, A. J., Dorsey, T. J.: Strongly clean matrix rings over commutative local rings.J. Pure Appl. Algebra, 212, 1, 2008, 281-296, Zbl 1162.16016, MR 2355051
Reference: [5] Chen, H.: On strongly $J$-clean rings.Comm. Algebra, 38, 2010, 3790-3804, Zbl 1242.16026, MR 2760691, 10.1080/00927870903286835
Reference: [6] Chen, H.: Rings related to stable range conditions.11, 2011, World Scientific, Hackensack, NJ, Zbl 1245.16002, MR 2752904
Reference: [7] Chen, H., Kose, H., Kurtulmaz, Y.: Factorizations of matrices over projective-free rings.arXiv preprint arXiv:1406.1237, 2014, MR 3439874
Reference: [8] Chen, H., Ungor, B., Halicioglu, S.: Very clean matrices over local rings.arXiv preprint arXiv:1406.1240, 2014,
Reference: [9] Diesl, A. J.: Classes of strongly clean rings.2006, ProQuest, Ph.D. Thesis, University of California, Berkeley.. MR 2709132
Reference: [10] Diesl, A. J.: Nil clean rings.J. Algebra, 383, 2013, 197-211, Zbl 1296.16016, MR 3037975, 10.1016/j.jalgebra.2013.02.020
Reference: [11] Evans, E. G.: Krull-Schmidt and cancellation over local rings.Pacific J. Math., 46, 1973, 115-121, Zbl 0272.13006, MR 0323815, 10.2140/pjm.1973.46.115
Reference: [12] Han, J., Nicholson, W. K.: Extensions of clean rings.Comm. Algebra, 29, 2011, 2589-2595, MR 1845131, 10.1081/AGB-100002409
Reference: [13] Herstein, I. N.: Noncommutative rings, The Carus Mathematical Monographs.15, 1968, Published by The Mathematical Association of America, Distributed by John Wiley and Sons, Inc., New York, 1968.. Zbl 0177.05801, MR 1449137
Reference: [14] Lam, T. Y.: A first course in noncommutative rings.131, 2001, Graduate Texts in Mathematics, Springer-Verlag, New York, Zbl 0980.16001, MR 1838439
Reference: [15] Mesyan, Z.: The ideals of an ideal extension.J. Algebra Appl., 9, 2010, 407-431, Zbl 1200.16042, MR 2659728, 10.1142/S0219498810003999
Reference: [16] Nicholson, W. K.: Lifting idempotents and exchange rings.Trans. Amer. Math. Soc., 229, 1977, 269-278, Zbl 0352.16006, MR 0439876, 10.1090/S0002-9947-1977-0439876-2
Reference: [17] Nicholson, W. K.: Strongly clean rings and Fitting's lemma.Comm. Algebra, 27, 1999, 3583-3592, Zbl 0946.16007, MR 1699586, 10.1080/00927879908826649
Reference: [18] Nicholson, W. K., Zhou, Y.: Rings in which elements are uniquely the sum of an idempotent and a unit.Glasgow Math. J., 46, 2004, 227-236, Zbl 1057.16007, MR 2062606, 10.1017/S0017089504001727
Reference: [19] Vaserstein, L. N.: Bass's first stable range condition.J. Pure Appl. Algebra, 34, 2, 1984, 319-330, Zbl 0547.16017, MR 0772066
.

Files

Files Size Format View
ActaOstrav_23-2015-1_2.pdf 510.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo