Previous |  Up |  Next

Article

Title: Existence of solutions for Navier problems with degenerate nonlinear elliptic equations (English)
Author: Cavalheiro, Albo Carlos
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 23
Issue: 1
Year: 2015
Pages: 33-45
Summary lang: English
.
Category: math
.
Summary: In this paper we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin {equation*} \Delta (v(x)\,\vert \Delta u\vert ^{q-2}\Delta u) -\sum _{j=1}^n D_j\bigl [\omega (x) {\cal A}_j(x, u, {\nabla }u)\bigr ] = f_0(x) - \sum _{j=1}^nD_jf_j(x), \text { in }\Omega \end {equation*} in the setting of the weighted Sobolev spaces. (English)
Keyword: degenerate nolinear elliptic equations
Keyword: weighted Sobolev spaces
Keyword: Navier problem
MSC: 35J60
MSC: 35J70
idZBL: Zbl 1353.35167
idMR: MR3394076
.
Date available: 2015-08-25T13:57:32Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144357
.
Reference: [1] Cavalheiro, A.C.: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems.J. Appl. Anal., 19, 2013, 41-54, Zbl 1278.35086, MR 3069764, 10.1515/jaa-2013-0003
Reference: [2] Cavalheiro, A.C.: Existence results for Dirichlet problems with degenerate $p$-Laplacian.Opuscula Math., 33, 3, 2013, 439-453, MR 3046406, 10.7494/OpMath.2013.33.3.439
Reference: [3] Chipot, M.: Elliptic Equations: An Introductory Course.2009, Birkhäuser, Berlin, Zbl 1171.35003, MR 2494977
Reference: [4] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities.1997, Walter de Gruyter, Berlin, Zbl 0894.35002, MR 1460729
Reference: [5] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations.Comm. Partial Differential Equations 7, 1982, 77–116, Zbl 0498.35042, MR 0643158, 10.1080/03605308208820218
Reference: [6] Fučík, S., John, O., Kufner, A.: Function Spaces.1977, Noordhoff International Publ., Leiden, Zbl 0364.46022, MR 0482102
Reference: [7] Garcia-Cuerva, J., Francia, J.L. Rubio de: Weighted Norm Inequalities and Related Topics.116, 1985, North-Holland Mathematics Studies, MR 0807149
Reference: [8] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Equations of Second Order.1983, Springer, New York, MR 0737190
Reference: [9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.1993, Oxford Math., Clarendon Press, Zbl 0780.31001, MR 1207810
Reference: [10] Kufner, A.: Weighted Sobolev Spaces.1985, John Wiley & Sons, Zbl 0579.35021, MR 0802206
Reference: [11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc., 165, 1972, 207-226, Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [12] Talbi, M., Tsouli, N.: On the spectrum of the weighted p-Biharmonic operator with weight.Mediterr. J. Math., 4, 2007, 73-86, Zbl 1150.35072, MR 2310704, 10.1007/s00009-007-0104-3
Reference: [13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis.1986, Academic Press, São Diego, Zbl 0621.42001, MR 0869816
Reference: [14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces.1736, 2000, Springer-Verlag, Zbl 0949.31006, MR 1774162
Reference: [15] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. I.1990, Springer-Verlag,
Reference: [16] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. II/B.1990, Springer-Verlag, MR 1033498
.

Files

Files Size Format View
ActaOstrav_23-2015-1_3.pdf 454.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo