Title:
|
Existence of solutions for Navier problems with degenerate nonlinear elliptic equations (English) |
Author:
|
Cavalheiro, Albo Carlos |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
23 |
Issue:
|
1 |
Year:
|
2015 |
Pages:
|
33-45 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin {equation*} \Delta (v(x)\,\vert \Delta u\vert ^{q-2}\Delta u) -\sum _{j=1}^n D_j\bigl [\omega (x) {\cal A}_j(x, u, {\nabla }u)\bigr ] = f_0(x) - \sum _{j=1}^nD_jf_j(x), \text { in }\Omega \end {equation*} in the setting of the weighted Sobolev spaces. (English) |
Keyword:
|
degenerate nolinear elliptic equations |
Keyword:
|
weighted Sobolev spaces |
Keyword:
|
Navier problem |
MSC:
|
35J60 |
MSC:
|
35J70 |
idZBL:
|
Zbl 1353.35167 |
idMR:
|
MR3394076 |
. |
Date available:
|
2015-08-25T13:57:32Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144357 |
. |
Reference:
|
[1] Cavalheiro, A.C.: Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems.J. Appl. Anal., 19, 2013, 41-54, Zbl 1278.35086, MR 3069764, 10.1515/jaa-2013-0003 |
Reference:
|
[2] Cavalheiro, A.C.: Existence results for Dirichlet problems with degenerate $p$-Laplacian.Opuscula Math., 33, 3, 2013, 439-453, MR 3046406, 10.7494/OpMath.2013.33.3.439 |
Reference:
|
[3] Chipot, M.: Elliptic Equations: An Introductory Course.2009, Birkhäuser, Berlin, Zbl 1171.35003, MR 2494977 |
Reference:
|
[4] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities.1997, Walter de Gruyter, Berlin, Zbl 0894.35002, MR 1460729 |
Reference:
|
[5] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations.Comm. Partial Differential Equations 7, 1982, 77–116, Zbl 0498.35042, MR 0643158, 10.1080/03605308208820218 |
Reference:
|
[6] Fučík, S., John, O., Kufner, A.: Function Spaces.1977, Noordhoff International Publ., Leiden, Zbl 0364.46022, MR 0482102 |
Reference:
|
[7] Garcia-Cuerva, J., Francia, J.L. Rubio de: Weighted Norm Inequalities and Related Topics.116, 1985, North-Holland Mathematics Studies, MR 0807149 |
Reference:
|
[8] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Equations of Second Order.1983, Springer, New York, MR 0737190 |
Reference:
|
[9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.1993, Oxford Math., Clarendon Press, Zbl 0780.31001, MR 1207810 |
Reference:
|
[10] Kufner, A.: Weighted Sobolev Spaces.1985, John Wiley & Sons, Zbl 0579.35021, MR 0802206 |
Reference:
|
[11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc., 165, 1972, 207-226, Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6 |
Reference:
|
[12] Talbi, M., Tsouli, N.: On the spectrum of the weighted p-Biharmonic operator with weight.Mediterr. J. Math., 4, 2007, 73-86, Zbl 1150.35072, MR 2310704, 10.1007/s00009-007-0104-3 |
Reference:
|
[13] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis.1986, Academic Press, São Diego, Zbl 0621.42001, MR 0869816 |
Reference:
|
[14] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces.1736, 2000, Springer-Verlag, Zbl 0949.31006, MR 1774162 |
Reference:
|
[15] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. I.1990, Springer-Verlag, |
Reference:
|
[16] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. II/B.1990, Springer-Verlag, MR 1033498 |
. |