Title:
|
On the range-kernel orthogonality of elementary operators (English) |
Author:
|
Bouali, Said |
Author:
|
Bouhafsi, Youssef |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
140 |
Issue:
|
3 |
Year:
|
2015 |
Pages:
|
261-269 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $L(H)$ denote the algebra of operators on a complex infinite dimensional Hilbert space $H$. For $A, B\in L(H)$, the generalized derivation $\delta _{A,B}$ and the elementary operator $\Delta _{A,B}$ are defined by $\delta _{A,B}(X)=AX-XB$ and $\Delta _{A,B}(X)=AXB-X$ for all $X\in L(H)$. In this paper, we exhibit pairs $(A,B)$ of operators such that the range-kernel orthogonality of $\delta _{A,B}$ holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of $\Delta _{A,B}$ with respect to the wider class of unitarily invariant norms on $L(H)$. (English) |
Keyword:
|
derivation |
Keyword:
|
elementary operator |
Keyword:
|
orthogonality |
Keyword:
|
unitarily invariant norm |
Keyword:
|
cyclic subnormal operator |
Keyword:
|
Fuglede-Putnam property |
MSC:
|
47A30 |
MSC:
|
47A63 |
MSC:
|
47B10 |
MSC:
|
47B15 |
MSC:
|
47B20 |
MSC:
|
47B47 |
idZBL:
|
Zbl 06486938 |
idMR:
|
MR3397256 |
DOI:
|
10.21136/MB.2015.144393 |
. |
Date available:
|
2015-09-03T10:47:52Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144393 |
. |
Reference:
|
[1] Anderson, J.: On normal derivations.Proc. Am. Math. Soc. 38 (1973), 135-140. Zbl 0255.47036, MR 0312313, 10.1090/S0002-9939-1973-0312313-6 |
Reference:
|
[2] Berger, C. A., Shaw, B. I.: Selfcommutators of multicyclic hyponormal operators are always trace class.Bull. Am. Math. Soc. 79 (1974), 1193-1199. Zbl 0283.47018, MR 0374972 |
Reference:
|
[3] Bouali, S., Bouhafsi, Y.: On the range kernel orthogonality and {$P$}-symmetric operators.Math. Inequal. Appl. 9 (2006), 511-519. Zbl 1112.47026, MR 2242781 |
Reference:
|
[4] Delai, M. B., Bouali, S., Cherki, S.: A remark on the orthogonality of the image to the kernel of a generalized derivation.Proc. Am. Math. Soc. 126 French (1998), 167-171. MR 1416081 |
Reference:
|
[5] Duggal, B. P.: A perturbed elementary operator and range-kernel orthogonality.Proc. Am. Math. Soc. 134 (2006), 1727-1734. Zbl 1082.47031, MR 2204285, 10.1090/S0002-9939-05-08337-1 |
Reference:
|
[6] Duggal, B. P.: A remark on normal derivations.Proc. Am. Math. Soc. 126 (1998), 2047-2052. Zbl 0894.47003, MR 1451795, 10.1090/S0002-9939-98-04326-3 |
Reference:
|
[7] Gohberg, I. C., Kreĭn, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators.Translations of Mathematical Monographs 18 American Mathematical Society, Providence (1969), translated from the Russian, Nauka, Moskva, 1965. Zbl 0181.13504, MR 0246142, 10.1090/mmono/018/01 |
Reference:
|
[8] Kittaneh, F.: Normal derivations in norm ideals.Proc. Am. Math. Soc. 123 (1995), 1779-1785. Zbl 0831.47036, MR 1242091, 10.1090/S0002-9939-1995-1242091-2 |
Reference:
|
[9] Tong, Y.: Kernels of generalized derivations.Acta Sci. Math. 54 (1990), 159-169. Zbl 0731.47038, MR 1073431 |
Reference:
|
[10] Turnšek, A.: Orthogonality in {$\scr C_p$} classes.Monatsh. Math. 132 (2001), 349-354. MR 1844072, 10.1007/s006050170039 |
Reference:
|
[11] Turnšek, A.: Elementary operators and orthogonality.Linear Algebra Appl. 317 (2000), 207-216. Zbl 1084.47510, MR 1782211 |
Reference:
|
[12] Yoshino, T.: Subnormal operator with a cyclic vector.Tôhoku Math. J. II. Ser. 21 (1969), 47-55. Zbl 0192.47801, MR 0246145, 10.2748/tmj/1178243033 |
. |