Previous |  Up |  Next

Article

Title: On the range-kernel orthogonality of elementary operators (English)
Author: Bouali, Said
Author: Bouhafsi, Youssef
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 3
Year: 2015
Pages: 261-269
Summary lang: English
.
Category: math
.
Summary: Let $L(H)$ denote the algebra of operators on a complex infinite dimensional Hilbert space $H$. For $A, B\in L(H)$, the generalized derivation $\delta _{A,B}$ and the elementary operator $\Delta _{A,B}$ are defined by $\delta _{A,B}(X)=AX-XB$ and $\Delta _{A,B}(X)=AXB-X$ for all $X\in L(H)$. In this paper, we exhibit pairs $(A,B)$ of operators such that the range-kernel orthogonality of $\delta _{A,B}$ holds for the usual operator norm. We generalize some recent results. We also establish some theorems on the orthogonality of the range and the kernel of $\Delta _{A,B}$ with respect to the wider class of unitarily invariant norms on $L(H)$. (English)
Keyword: derivation
Keyword: elementary operator
Keyword: orthogonality
Keyword: unitarily invariant norm
Keyword: cyclic subnormal operator
Keyword: Fuglede-Putnam property
MSC: 47A30
MSC: 47A63
MSC: 47B10
MSC: 47B15
MSC: 47B20
MSC: 47B47
idZBL: Zbl 06486938
idMR: MR3397256
DOI: 10.21136/MB.2015.144393
.
Date available: 2015-09-03T10:47:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144393
.
Reference: [1] Anderson, J.: On normal derivations.Proc. Am. Math. Soc. 38 (1973), 135-140. Zbl 0255.47036, MR 0312313, 10.1090/S0002-9939-1973-0312313-6
Reference: [2] Berger, C. A., Shaw, B. I.: Selfcommutators of multicyclic hyponormal operators are always trace class.Bull. Am. Math. Soc. 79 (1974), 1193-1199. Zbl 0283.47018, MR 0374972
Reference: [3] Bouali, S., Bouhafsi, Y.: On the range kernel orthogonality and {$P$}-symmetric operators.Math. Inequal. Appl. 9 (2006), 511-519. Zbl 1112.47026, MR 2242781
Reference: [4] Delai, M. B., Bouali, S., Cherki, S.: A remark on the orthogonality of the image to the kernel of a generalized derivation.Proc. Am. Math. Soc. 126 French (1998), 167-171. MR 1416081
Reference: [5] Duggal, B. P.: A perturbed elementary operator and range-kernel orthogonality.Proc. Am. Math. Soc. 134 (2006), 1727-1734. Zbl 1082.47031, MR 2204285, 10.1090/S0002-9939-05-08337-1
Reference: [6] Duggal, B. P.: A remark on normal derivations.Proc. Am. Math. Soc. 126 (1998), 2047-2052. Zbl 0894.47003, MR 1451795, 10.1090/S0002-9939-98-04326-3
Reference: [7] Gohberg, I. C., Kreĭn, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators.Translations of Mathematical Monographs 18 American Mathematical Society, Providence (1969), translated from the Russian, Nauka, Moskva, 1965. Zbl 0181.13504, MR 0246142, 10.1090/mmono/018/01
Reference: [8] Kittaneh, F.: Normal derivations in norm ideals.Proc. Am. Math. Soc. 123 (1995), 1779-1785. Zbl 0831.47036, MR 1242091, 10.1090/S0002-9939-1995-1242091-2
Reference: [9] Tong, Y.: Kernels of generalized derivations.Acta Sci. Math. 54 (1990), 159-169. Zbl 0731.47038, MR 1073431
Reference: [10] Turnšek, A.: Orthogonality in {$\scr C_p$} classes.Monatsh. Math. 132 (2001), 349-354. MR 1844072, 10.1007/s006050170039
Reference: [11] Turnšek, A.: Elementary operators and orthogonality.Linear Algebra Appl. 317 (2000), 207-216. Zbl 1084.47510, MR 1782211
Reference: [12] Yoshino, T.: Subnormal operator with a cyclic vector.Tôhoku Math. J. II. Ser. 21 (1969), 47-55. Zbl 0192.47801, MR 0246145, 10.2748/tmj/1178243033
.

Files

Files Size Format View
MathBohem_140-2015-3_1.pdf 232.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo