Previous |  Up |  Next

Article

Title: Improvements on the Cantor-Zassenhaus factorization algorithm (English)
Author: Elia, Michele
Author: Schipani, Davide
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 3
Year: 2015
Pages: 271-290
Summary lang: English
.
Category: math
.
Summary: The paper presents a careful analysis of the Cantor-Zassenhaus polynomial factorization algorithm, thus obtaining tight bounds on the performances, and proposing useful improvements. In particular, a new simplified version of this algorithm is described, which entails a lower computational cost. The key point is to use linear test polynomials, which not only reduce the computational burden, but can also provide good estimates and deterministic bounds of the number of operations needed for factoring. Specifically, the number of attempts needed to factor a given polynomial, and the least degree of a polynomial such that a factor is found with at most a fixed number of attempts, are computed. Interestingly, the results obtained demonstrate the existence of some sort of duality relationship between these two problems. (English)
Keyword: polynomial factorization
Keyword: Cantor-Zassenhaus algorithm
MSC: 12E30
MSC: 12Y05
idZBL: Zbl 06486939
idMR: MR3397257
DOI: 10.21136/MB.2015.144395
.
Date available: 2015-09-03T10:49:29Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144395
.
Reference: [1] Bach, E., Shallit, J.: Algorithmic Number Theory. Volume 1: Efficient Algorithms.Foundations of Computing Series MIT Press, Cambridge (1996). MR 1406794
Reference: [2] Ben-Or, M.: Probabilistic Algorithms in Finite Fields.Proc. 22nd Annual IEEE Symp. Foundations of Computer Science (1981), 394-398.
Reference: [3] Benjamin, A. T., Scott, J. N.: Third and fourth binomial coefficients.Fibonacci Q. 49 (2011), 99-101. Zbl 1227.05030, MR 2801795
Reference: [4] Berndt, B. C., Evans, R. J., Williams, K. S.: Gauss and Jacobi Sums.Canadian Mathematical Society Series of Monographs and Advanced Texts John Wiley & Sons, New York (1998). Zbl 0906.11001, MR 1625181
Reference: [5] Cantor, D. G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields.Math. Comput. 36 (1981), 587-592. Zbl 0493.12024, MR 0606517, 10.1090/S0025-5718-1981-0606517-5
Reference: [6] Gould, H. W.: Combinatorial Identities.Henry W. Gould, Morgantown, W.Va. (1972). Zbl 0263.05013, MR 0354401
Reference: [7] Jungnickel, D.: Finite Fields: Structure and Arithmetics.Bibliographisches Institut Wissenschaftsverlag Mannheim (1993). Zbl 0779.11058, MR 1238714
Reference: [8] Lidl, R., Niederreiter, H.: Finite Fields.Encyclopedia of Mathematics and Its Applications 20 Cambridge Univ. Press, Cambridge (1996). Zbl 0866.11069, MR 1429394
Reference: [9] Monico, C., Elia, M.: An additive characterization of fibers of characters on {$\Bbb F^\ast_p$}.Int. J. Algebra 4 (2010), 109-117. MR 2577460
Reference: [10] Monico, C., Elia, M.: Note on an additive characterization of quadratic residues modulo {$p$}.J. Comb. Inf. Syst. Sci. 31 (2006), 209-215. Zbl 1231.11005, MR 2351719
Reference: [11] Rabin, M. O.: Probabilistic algorithms in finite fields.SIAM J. Comput. 9 (1980), 273-280. Zbl 0461.12012, MR 0568814, 10.1137/0209024
Reference: [12] Raymond, D.: An Additive Characterization of Quadratic Residues.Master Degree thesis Texas Tech University (2009).
Reference: [13] Schipani, D., Elia, M.: Additive decompositions induced by multiplicative characters over finite fields.Theory and Applications of Finite Fields. The 10th International Conference on Finite Fields and Their Applications, Ghent, Belgium, 2011 Contemp. Math. 579 American Mathematical Society, Providence (2012), 179-186 M. Lavrauw et al. Zbl 1298.11112, MR 2975768, 10.1090/conm/579/11529
Reference: [14] Schipani, D., Elia, M.: Gauss sums of the cubic character over {$ GF(2^m)$}: An elementary derivation.Bull. Pol. Acad. Sci., Math. 59 (2011), 11-18. Zbl 1215.11117, MR 2810967, 10.4064/ba59-1-2
Reference: [15] Schmidt, W. M.: Equations over Finite Fields. An Elementary Approach.Lecture Notes in Mathematics 536 Springer, Berlin (1976). Zbl 0329.12001, MR 0429733, 10.1007/BFb0080437
Reference: [16] Sloane, N. J. A.: The on-line encyclopedia of integer sequences.Ann. Math. Inform. 41 (2013), 219-234. Zbl 1274.11001, MR 3072304
Reference: [17] Winterhof, A.: Character sums, primitive elements, and powers in finite fields.J. Number Theory 91 (2001), 153-163. Zbl 1008.11069, MR 1869323, 10.1006/jnth.2001.2675
Reference: [18] Winterhof, A.: On the distribution of powers in finite fields.Finite Fields Appl. 4 (1998), 43-54. Zbl 0910.11055, MR 1612072, 10.1006/ffta.1997.0199
.

Files

Files Size Format View
MathBohem_140-2015-3_2.pdf 319.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo