Full entry |
PDF
(0.2 MB)
Feedback

$0$-distributive poset; ideal; $\alpha $-ideal; prime ideal; non-dense ideal; minimal ideal; annihilator ideal

References:

[1] Balasubramani, P., Venkatanarasimhan, P. V.: **Characterizations of the $0$-distributive lattice**. Indian J. Pure Appl. Math. 32 (2001), 315-324. MR 1826759 | Zbl 0984.06007

[2] Cornish, W. H.: **Annulets and $\alpha$-ideals in a distributive lattice**. J. Aust. Math. Soc. 15 (1973), 70-77. DOI 10.1017/S1446788700012775 | MR 0344170 | Zbl 0274.06008

[3] Grätzer, G.: **General Lattice Theory. New appendices by the author with B. A. Davey et al**. Birkhäuser Basel (1998). MR 1670580

[4] Grillet, P. A., Varlet, J. C.: **Complementedness conditions in lattices**. Bull. Soc. R. Sci. Liège (electronic only) 36 (1967), 628-642. MR 0228389 | Zbl 0157.34202

[5] Halaš, R.: **Characterization of distributive sets by generalized annihilators**. Arch. Math., Brno 30 (1994), 25-27. MR 1282110

[6] Halaš, R., Rachůnek, J.: **Polars and prime ideals in ordered sets**. Discuss. Math., Algebra Stoch. Methods 15 (1995), 43-59. MR 1369627

[7] Jayaram, C.: **Prime {$\alpha$}-ideals in an {$0$}-distributive lattice**. Indian J. Pure Appl. Math. 17 (1986), 331-337. MR 0835346

[8] Joshi, V. V., Mundlik, N.: **Prime ideals in $0$-distributive posets**. Cent. Eur. J. Math. 11 (2013), 940-955. MR 3032342 | Zbl 1288.06002

[9] Joshi, V. V., Waphare, B. N.: **Characterizations of $0$-distributive posets**. Math. Bohem. 130 (2005), 73-80. MR 2128360 | Zbl 1112.06001

[10] Kharat, V. S., Mokbel, K. A.: **Semiprime ideals and separation theorems for posets**. Order 25 (2008), 195-210. DOI 10.1007/s11083-008-9087-3 | MR 2448404 | Zbl 1155.06003

[11] Pawar, Y. S., Khopade, S. S.: **$\alpha$-ideals and annihilator ideals in $0$-distributive lattices**. Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 49 (2010), 63-74. MR 2797524 | Zbl 1245.06023

[12] Pawar, Y. S., Mane, D. N.: **$\alpha$-ideals in $0$-distributive semilattices and $0$-distributive lattices**. Indian J. Pure Appl. Math. 24 (1993), 435-443. MR 1234802 | Zbl 0789.06005