Previous |  Up |  Next

Article

Title: $R_z$-supercontinuous functions (English)
Author: Singh, Davinder
Author: Tyagi, Brij Kishore
Author: Aggarwal, Jeetendra
Author: Kohli, Jogendra K.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 3
Year: 2015
Pages: 329-343
Summary lang: English
.
Category: math
.
Summary: A new class of functions called “$R_{z}$-supercontinuous functions” is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity that already exist in the literature is elaborated. The class of $R_{z}$-supercontinuous functions properly includes the class of $R_{\rm cl}$-supercontinuous functions, Tyagi, Kohli, Singh (2013), which in its turn contains the class of $\rm cl$-supercontinuous ($\equiv $ clopen continuous) functions, Singh (2007), Reilly, Vamanamurthy (1983), and is strictly contained in the class of $R_{\delta }$-supercontinuous, Kohli, Tyagi, Singh, Aggarwal (2014), which in its turn is properly contained in the class of $R$-supercontinuous functions, Kohli, Singh, Aggarwal (2010). (English)
Keyword: $z$-supercontinuous function
Keyword: $F$-supercontinuous function
Keyword: $\rm cl$-supercontinuous function
Keyword: $R_z$-supercontinuous function
Keyword: $R$-supercontinuous function
Keyword: $r_z$-open set
Keyword: $r_z$-closed set
Keyword: $z$-embedded set
Keyword: $R_z$-space
Keyword: functionally Hausdorff space
MSC: 54C08
MSC: 54C10
idZBL: Zbl 06486943
idMR: MR3397261
DOI: 10.21136/MB.2015.144399
.
Date available: 2015-09-03T10:56:16Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144399
.
Reference: [1] Alò, R. A., Shapiro, H. L.: Normal Topological Spaces.Cambridge Tracts in Mathematics 65 Cambridge University Press, Cambridge (1974). Zbl 0282.54005, MR 2483377
Reference: [2] Aull, C. E.: Functionally regular spaces.Nederl. Akad. Wet., Proc., Indag. Math. 38, Ser. A 79 (1976), 281-288. Zbl 0352.54006, MR 0428268, 10.1016/1385-7258(76)90066-4
Reference: [3] Beckhoff, F.: Topologies on the ideal space of a {B}anach algebra and spectral synthesis.Proc. Am. Math. Soc. 125 (1997), 2859-2866. Zbl 0883.46032, MR 1389504, 10.1090/S0002-9939-97-03831-8
Reference: [4] Beckhoff, F.: Topologies of compact families on the ideal space of a {B}anach algebra.Stud. Math. 118 (1996), 63-75. Zbl 0854.46045, MR 1373625, 10.4064/sm-118-1-63-75
Reference: [5] Beckhoff, F.: Topologies on the space of ideals of a {B}anach algebra.Stud. Math. 115 (1995), 189-205. Zbl 0836.46038, MR 1347441, 10.4064/sm-115-2-189-205
Reference: [6] Blair, R. L., Hager, A. W.: Extensions of zero-sets and of real-valued functions.Math. Z. 136 (1974), 41-52. Zbl 0264.54011, MR 0385793, 10.1007/BF01189255
Reference: [7] Gauld, D. B., Mršević, M., Reilly, I. L., Vamanamurthy, M. K.: Continuity properties of functions.Topology, Theory and Applications, ed. Á. Császár, 5th Colloq., Eger, Hungary, 1983, Colloq. Math. Soc. János Bolyai 41 North-Holland, Amsterdam; János Bolyai Mathematical Society, Budapest (1985), 311-322. Zbl 0605.54011, MR 0863913
Reference: [8] Gleason, A. M.: Universal locally connected refinements.Ill. J. Math. 7 (1963), 521-531. Zbl 0117.16101, MR 0164315, 10.1215/ijm/1255644959
Reference: [9] Kohli, J. K.: Change of topology, characterizations and product theorems for semilocally {$P$}-spaces.Houston J. Math. 17 (1991), 335-350. Zbl 0781.54007, MR 1126598
Reference: [10] Kohli, J. K.: A framework including the theories of continuous functions and certain noncontinuous functions.Note Mat. 10 (1990), 37-45. MR 1165488
Reference: [11] Kohli, J. K.: A unified approach to continuous and certain noncontinuous functions. I.J. Aust. Math. Soc., Ser. A 48 (1990), 347-358. MR 1050622, 10.1017/S1446788700029906
Reference: [12] Kohli, J. K.: A unified approach to continuous and certain noncontinuous functions. {II}.Bull. Aust. Math. Soc. 41 (1990), 57-74. MR 1043967, 10.1017/S0004972700017858
Reference: [13] Kohli, J. K.: A unified view of (complete) regularity and certain variants of (complete) regularity.Can. J. Math. 36 (1984), 783-794. Zbl 0553.54006, MR 0762741, 10.4153/CJM-1984-045-8
Reference: [14] Kohli, J. K.: A class of mappings containing all continuous and all semiconnected mappings.Proc. Am. Math. Soc. 72 (1978), 175-181. Zbl 0408.54003, MR 0493941, 10.1090/S0002-9939-1978-0493941-9
Reference: [15] Kohli, J. K., Kumar, R.: $z$-supercontinuous functions.Indian J. Pure Appl. Math. 33 (2002), 1097-1108. Zbl 1010.54012, MR 1921976
Reference: [16] Kohli, J. K., Singh, D.: $D_\delta$-supercontinuous functions.Indian J. Pure Appl. Math. 34 (2003), 1089-1100. Zbl 1036.54003, MR 2001098
Reference: [17] Kohli, J. K., Singh, D.: $D$-supercontinuous functions.Indian J. Pure Appl. Math. 32 (2001), 227-235. Zbl 0977.54011, MR 1820863
Reference: [18] Kohli, J. K., Singh, D., Aggarwal, J.: $R$-supercontinuous functions.Demonstr. Math. (electronic only) 43 (2010), 703-723. Zbl 1217.54016, MR 2683367
Reference: [19] Kohli, J. K., Singh, D., Aggarwal, J.: $F$-supercontinuous functions.Appl. Gen. Topol. (electronic only) 10 (2009), 69-83. Zbl 1189.54013, MR 2602603, 10.4995/agt.2009.1788
Reference: [20] Kohli, J. K., Singh, D., Kumar, R.: Some properties of strongly {$\theta$}-continuous functions.Bull. Calcutta Math. Soc. 100 (2008), 185-196. MR 2437543
Reference: [21] Kohli, J. K., Tyagi, B. K., Singh, D., Aggarwal, J.: $R_\delta$-supercontinuous functions.Demonstr. Math. (electronic only) 47 (2014), 433-448. Zbl 1300.54022, MR 3217739
Reference: [22] Levine, N.: Strong, continuity in topological spaces.Am. Math. Mon. 67 (1960), 269. Zbl 0156.43305, 10.2307/2309695
Reference: [23] Long, P. E., Herrington, L. L.: Strongly $\theta $-continuous functions.J. Korean Math. Soc. 18 (1981), 21-28. Zbl 0478.54006, MR 0635376
Reference: [24] Mack, J.: Countable paracompactness and weak normality properties.Trans. Am. Math. Soc. 148 (1970), 265-272. Zbl 0209.26904, MR 0259856, 10.1090/S0002-9947-1970-0259856-3
Reference: [25] Munshi, B. M., Bassan, D. S.: Super-continuous mappings.Indian J. Pure Appl. Math. 13 (1982), 229-236. Zbl 0483.54007, MR 0651833
Reference: [26] Noiri, T.: Supercontinuity and some strong forms of continuity.Indian J. Pure Appl. Math. 15 (1984), 241-250. MR 0737147
Reference: [27] Noiri, T.: On $\delta $-continuous functions.J. Korean Math. Soc. 16 (1980), 161-166. Zbl 0435.54010, MR 0577894
Reference: [28] Reilly, I. L., Vamanamurthy, M. K.: On super-continuous mappings.Indian J. Pure Appl. Math. 14 (1983), 767-772. Zbl 0509.54007, MR 0717860
Reference: [29] Singal, M. K., Nimse, S. B.: $z$-continuous mappings.Math. Stud. 66 (1997), 193-210. Zbl 1194.54020, MR 1626266
Reference: [30] Singh, D.: $\rm cl$-supercontinuous functions.Appl. Gen. Topol. 8 (2007), 293-300. MR 2398521, 10.4995/agt.2007.1899
Reference: [31] Singh, D.: $D^*$-supercontinuous functions.Bull. Calcutta Math. Soc. 94 (2002), 67-76. Zbl 1012.54016, MR 1928464
Reference: [32] Singh, D., Kohli, J. K.: Separation axioms between functionally regular spaces and $R_{0}$-spaces.Submitted to Sci. Stud. Res., Ser. Math. Inform.
Reference: [33] Somerset, D. W. B.: Ideal spaces of Banach algebras.Proc. Lond. Math. Soc. (3) 78 (1999), 369-400. Zbl 1027.46058, MR 1665247, 10.1112/S0024611599001677
Reference: [34] L. A. Steen, J. A. Seebach, Jr.: Counterexamples in Topology.Springer, New York (1978). Zbl 0386.54001, MR 0507446
Reference: [35] Tyagi, B. K., Kohli, J. K., Singh, D.: $R_ cl$-supercontinuous functions.Demonstr. Math. (electronic only) 46 (2013), 229-244. Zbl 1272.54015, MR 3075511
Reference: [36] Est, W. T. van, Freudenthal, H.: Trennung durch stetige Funktionen in topologischen Räumen.Nederl. Akad. Wet., Proc., Indagationes Math. 13, Ser. A 54 German (1951), 359-368. MR 0046033, 10.1016/S1385-7258(51)50051-3
Reference: [37] Veličko, N. V.: $H$-closed topological spaces.Transl., Ser. 2, Am. Math. Soc. 78 (1968), 103-118 translation from Russian original, Mat. Sb. (N.S.), 70 98-112 (1966). MR 0198418
Reference: [38] G. S. Young, Jr.: The introduction of local connectivity by change of topology.Am. J. Math. 68 (1946), 479-494. Zbl 0060.40204, MR 0016663, 10.2307/2371828
.

Files

Files Size Format View
MathBohem_140-2015-3_6.pdf 295.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo