Previous |  Up |  Next

Article

Title: A representation theorem for tense $n\times m$-valued Łukasiewicz-Moisil algebras (English)
Author: Figallo, Aldo Victorio
Author: Pelaitay, Gustavo
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 3
Year: 2015
Pages: 345-360
Summary lang: English
.
Category: math
.
Summary: In 2000, Figallo and Sanza introduced $n\times m$-valued Łukasiewicz-Moisil algebras which are both particular cases of matrix Łukasiewicz algebras and a generalization of $n$-valued Łukasiewicz-Moisil algebras. Here we initiate an investigation into the class {\bf tLM}$_{n\times m}$ of tense $n\times m$-valued Łukasiewicz-Moisil algebras (or tense LM$_{n\times m}$-algebras), namely $n\times m$-valued Łukasiewicz-Moisil algebras endowed with two unary operations called tense operators. These algebras constitute a generalization of tense Łukasiewicz-Moisil algebras (or tense LM$_{n}$-algebras). Our most important result is a representation theorem for tense LM$_{n\times m}$-algebras. Also, as a corollary of this theorem, we obtain the representation theorem given by Georgescu and Diaconescu in 2007, for tense LM$_{n}$-algebras. (English)
Keyword: $n$-valued Łukasiewicz-Moisil algebra
Keyword: tense $n$-valued Łukasiewicz-Moisil algebra
Keyword: $n\times m$-valued Łukasiewicz-Moisil algebra
MSC: 03G20
MSC: 06D30
idZBL: Zbl 06486944
idMR: MR3397262
DOI: 10.21136/MB.2015.144400
.
Date available: 2015-09-03T10:58:22Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144400
.
Reference: [1] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz-Moisil Algebras.Annals of Discrete Mathematics 49 North-Holland, Amsterdam (1991). Zbl 0726.06007, MR 1112790
Reference: [2] Botur, M., Chajda, I., Halaš, R., Kolařík, M.: Tense operators on basic algebras.Int. J. Theor. Phys. 50 (2011), 3737-3749. Zbl 1246.81014, MR 2860032, 10.1007/s10773-011-0748-4
Reference: [3] Botur, M., Paseka, J.: On tense {MV}-algebras.Fuzzy Sets and Systems 259 (2015), 111-125. Zbl 1335.03069, MR 3278748
Reference: [4] Burgess, J. P.: Basic tense logic.Handbook of Philosophical Logic. Vol. II: Extensions of Classical Logic Synthese Lib. 165 D. Reidel Publishing, Dordrecht (1984), 89-133 D. Gabbay et al. Zbl 0875.03046, MR 0844597
Reference: [5] Chajda, I., Kolařík, M.: Dynamic effect algebras.Math. Slovaca 62 (2012), 379-388. Zbl 1324.03026, MR 2915603, 10.2478/s12175-012-0015-z
Reference: [6] Chajda, I., Paseka, J.: Dynamic effect algebras and their representations.Soft Comput. 16 (2012), 1733-1741. Zbl 1318.03059, 10.1007/s00500-012-0857-x
Reference: [7] Chiriţă, C.: Polyadic tense $\theta$-valued Łukasiewicz-Moisil algebras.Soft Comput. 16 (2012), 979-987. Zbl 1277.03067, MR 2760964, 10.1007/s00500-011-0796-y
Reference: [8] Chiriţă, C.: Tense {$\theta$}-valued Łukasiewicz-Moisil algebras.J. Mult.-Val. Log. Soft Comput. 17 (2011), 1-24. Zbl 1236.03046, MR 2760964
Reference: [9] Chiriţă, C.: Tense $\theta$-valued Moisil propositional logic.Int. J. of Computers, Communications and Control 5 (2010), 642-653. 10.15837/ijccc.2010.5.2220
Reference: [10] Diaconescu, D., Georgescu, G.: Tense operators on {MV}-algebras and Łukasiewicz-Moisil algebras.Fundam. Inform. 81 (2007), 379-408. Zbl 1136.03045, MR 2372716
Reference: [11] Figallo, A. V., Pelaitay, G.: Discrete duality for tense Łukasiewicz-Moisil algebras.Fund. Inform. 136 (2015), 317-329. Zbl 1350.03047, MR 3320018, 10.3233/FI-2015-1160
Reference: [12] Figallo, A. V., Pelaitay, G.: Tense operators on De Morgan algebras.Log. J. IGPL 22 (2014), 255-267. Zbl 1347.06012, MR 3188082, 10.1093/jigpal/jzt024
Reference: [13] Figallo, A. V., Pelaitay, G.: Note on tense SH$n$-algebras.An. Univ. Craiova Ser. Mat. Inform. 38 (2011), 24-32. MR 2874020
Reference: [14] Figallo, A. V., Pelaitay, G.: Tense operators on SH$n$-algebras.Pioneer J. Algebra Number Theory Appl. 1 (2011), 33-41. MR 3029804
Reference: [15] Figallo, A. V., Sanza, C.: Monadic {$n\times m$}-valued Łukasiewicz-Moisil algebras.Math. Bohem. 137 (2012), 425-447. Zbl 1274.03104, MR 3058274
Reference: [16] Figallo, A. V., Sanza, C. A.: The ${\cal NS}_{n\times m}$-propositional calculus.Bull. Sect. Log., Univ. Łód'z, Dep. Log. 37 (2008), 67-79. Zbl 1286.03182, MR 2460596
Reference: [17] Figallo, A. V., Sanza, C.: Álgebras de Łukasiewicz $n\times m$-valuadas con negación.Noticiero Unión Mat. Argent. 93 (2000), 93-94.
Reference: [18] Kowalski, T.: Varieties of tense algebras.Rep. Math. Logic 32 (1998), 53-95. Zbl 0941.03066, MR 1735173
Reference: [19] Moisil, G. C.: Essais sur les logiques non chrysippiennes.Éditions de l'Académie de la République Socialiste de Roumanie Bucharest French (1972). Zbl 0241.02006, MR 0398774
Reference: [20] Paseka, J.: Operators on {MV}-algebras and their representations.Fuzzy Sets and Systems 232 (2013), 62-73. Zbl 1314.06016, MR 3118535, 10.1016/j.fss.2013.02.010
Reference: [21] Sanza, C. A.: On {$n\times m$}-valued Łukasiewicz-Moisil algebras.Cent. Eur. J. Math. 6 (2008), 372-383. Zbl 1155.06009, MR 2424999, 10.2478/s11533-008-0035-7
Reference: [22] Sanza, C. A.: {$n\times m$}-valued Łukasiewicz algebras with negation.Rep. Math. Logic 40 (2006), 83-106. Zbl 1096.03076, MR 2207304
Reference: [23] Sanza, C.: Álgebras de Łukasiewicz $n\times m$-valuadas con negación.Doctoral Thesis Universidad Nacional del Sur, Bahía Blanca, Argentina (2005).
Reference: [24] Sanza, C.: Notes on {$n\times m$}-valued Łukasiewicz algebras with negation.Log. J. IGPL 12 (2004), 499-507. Zbl 1062.06018, MR 2117684, 10.1093/jigpal/12.6.499
Reference: [25] Suchoń, W.: Matrix Łukasiewicz algebras.Rep. Math. Logic 4 (1975), 91-104. Zbl 0348.02021
.

Files

Files Size Format View
MathBohem_140-2015-3_7.pdf 296.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo