Title:
|
On the existence of parabolic actions in convex domains of $\mathbb C^{k+1}$ (English) |
Author:
|
Berteloot, François |
Author:
|
Thu, Ninh Van |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
3 |
Year:
|
2015 |
Pages:
|
579-585 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric. (English) |
Keyword:
|
parabolic boundary point |
Keyword:
|
convex domain |
Keyword:
|
automorphism group |
MSC:
|
32H02 |
MSC:
|
32H50 |
MSC:
|
32M05 |
idZBL:
|
Zbl 06537681 |
idMR:
|
MR3407594 |
DOI:
|
10.1007/s10587-015-0197-y |
. |
Date available:
|
2015-10-04T17:58:57Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144431 |
. |
Reference:
|
[1] Bedford, E., Pinchuk, S.: Domains in {${\mathbb C}^2$} with noncompact automorphism groups.Indiana Univ. Math. J. 47 (1998), 199-222. MR 1631557, 10.1512/iumj.1998.47.1552 |
Reference:
|
[2] Bedford, E., Pinchuk, S.: Domains in {${\mathbb C}^{n+1}$} with noncompact automorphism group.J. Geom. Anal. 1 (1991), 165-191. MR 1120679, 10.1007/BF02921302 |
Reference:
|
[3] Bedford, E., Pinchuk, S. I.: Domains in {${\mathbb C}^2$} with noncompact groups of holomorphic automorphisms.Math. USSR, Sb. 63 (1989), 141-151 translation from Mat. Sb., Nov. Ser. 135(177) (1988), 147-157, 271 Russian. MR 0937803, 10.1070/SM1989v063n01ABEH003264 |
Reference:
|
[4] Berteloot, F.: Principe de Bloch et estimations de la métrique de Kobayashi des domaines de $\mathbb C^2$.J. Geom. Anal. 13 French (2003), 29-37. MR 1967034, 10.1007/BF02930994 |
Reference:
|
[5] Berteloot, F.: Characterization of models in {$\mathbb C^2$} by their automorphism groups.Int. J. Math. 5 (1994), 619-634. MR 1297410, 10.1142/S0129167X94000322 |
Reference:
|
[6] Berteloot, F., C{\oe}uré, G.: Domaines de {${\mathbb C}^2$}, pseudoconvexes et de type fini ayant un groupe non compact d'automorphismes.Ann. Inst. Fourier 41 French (1991), 77-86. MR 1112192, 10.5802/aif.1249 |
Reference:
|
[7] Byun, J., Gaussier, H.: On the compactness of the automorphism group of a domain.C. R., Math., Acad. Sci. Paris 341 (2005), 545-548. Zbl 1086.32020, MR 2181391, 10.1016/j.crma.2005.09.018 |
Reference:
|
[8] Greene, R. E., Krantz, S. G.: Techniques for studying automorphisms of weakly pseudoconvex domains.Several Complex Variables: Proceedings of the Mittag-Leffler Institute, Stockholm, Sweden, 1987/1988 Math. Notes 38 Princeton University Press, Princeton (1993), 389-410 J. E. Fornæss. Zbl 0779.32017, MR 1207869 |
Reference:
|
[9] Isaev, A. V., Krantz, S. G.: Domains with non-compact automorphism group: a survey.Adv. Math. 146 (1999), 1-38. Zbl 1040.32019, MR 1706680, 10.1006/aima.1998.1821 |
Reference:
|
[10] Kang, H.: Holomorphic automorphisms of certain class of domains of infinite type.Tohoku Math. J. (2) 46 (1994), 435-442. Zbl 0817.32011, MR 1289190, 10.2748/tmj/1178225723 |
Reference:
|
[11] Kim, K.-T.: On a boundary point repelling automorphism orbits.J. Math. Anal. Appl. 179 (1993), 463-482. MR 1249831, 10.1006/jmaa.1993.1362 |
Reference:
|
[12] Kim, K.-T., Krantz, S. G.: Some new results on domains in complex space with non-compact automorphism group.J. Math. Anal. Appl. 281 (2003), 417-424. Zbl 1035.32019, MR 1982663, 10.1016/S0022-247X(03)00003-9 |
Reference:
|
[13] Kim, K.-T., Krantz, S. G.: Complex scaling and domains with non-compact automorphism group.Ill. J. Math. 45 (2001), 1273-1299. Zbl 1065.32014, MR 1895457, 10.1215/ijm/1258138066 |
Reference:
|
[14] Landucci, M.: The automorphism group of domains with boundary points of infinite type.Ill. J. Math. 48 (2004), 875-885. Zbl 1065.32016, MR 2114256, 10.1215/ijm/1258131057 |
Reference:
|
[15] Rosay, J.-P.: Sur une caractérisation de la boule parmi les domaines de {${\mathbb C}^n$} par son groupe d'automorphismes.Ann. Inst. Fourier 29 French (1979), 91-97. MR 0558590, 10.5802/aif.768 |
Reference:
|
[16] Wong, B.: Characterization of the unit ball in {${\mathbb C}^n$} by its automorphism group.Invent. Math. 41 (1977), 253-257. MR 0492401, 10.1007/BF01403050 |
. |