Previous |  Up |  Next

Article

Title: On the existence of parabolic actions in convex domains of $\mathbb C^{k+1}$ (English)
Author: Berteloot, François
Author: Thu, Ninh Van
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 3
Year: 2015
Pages: 579-585
Summary lang: English
.
Category: math
.
Summary: We prove that the one-parameter group of holomorphic automorphisms induced on a strictly geometrically bounded domain by a biholomorphism with a model domain is parabolic. This result is related to the Greene-Krantz conjecture and more generally to the classification of domains having a non compact automorphisms group. The proof relies on elementary estimates on the Kobayashi pseudo-metric. (English)
Keyword: parabolic boundary point
Keyword: convex domain
Keyword: automorphism group
MSC: 32H02
MSC: 32H50
MSC: 32M05
idZBL: Zbl 06537681
idMR: MR3407594
DOI: 10.1007/s10587-015-0197-y
.
Date available: 2015-10-04T17:58:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144431
.
Reference: [1] Bedford, E., Pinchuk, S.: Domains in {${\mathbb C}^2$} with noncompact automorphism groups.Indiana Univ. Math. J. 47 (1998), 199-222. MR 1631557, 10.1512/iumj.1998.47.1552
Reference: [2] Bedford, E., Pinchuk, S.: Domains in {${\mathbb C}^{n+1}$} with noncompact automorphism group.J. Geom. Anal. 1 (1991), 165-191. MR 1120679, 10.1007/BF02921302
Reference: [3] Bedford, E., Pinchuk, S. I.: Domains in {${\mathbb C}^2$} with noncompact groups of holomorphic automorphisms.Math. USSR, Sb. 63 (1989), 141-151 translation from Mat. Sb., Nov. Ser. 135(177) (1988), 147-157, 271 Russian. MR 0937803, 10.1070/SM1989v063n01ABEH003264
Reference: [4] Berteloot, F.: Principe de Bloch et estimations de la métrique de Kobayashi des domaines de $\mathbb C^2$.J. Geom. Anal. 13 French (2003), 29-37. MR 1967034, 10.1007/BF02930994
Reference: [5] Berteloot, F.: Characterization of models in {$\mathbb C^2$} by their automorphism groups.Int. J. Math. 5 (1994), 619-634. MR 1297410, 10.1142/S0129167X94000322
Reference: [6] Berteloot, F., C{\oe}uré, G.: Domaines de {${\mathbb C}^2$}, pseudoconvexes et de type fini ayant un groupe non compact d'automorphismes.Ann. Inst. Fourier 41 French (1991), 77-86. MR 1112192, 10.5802/aif.1249
Reference: [7] Byun, J., Gaussier, H.: On the compactness of the automorphism group of a domain.C. R., Math., Acad. Sci. Paris 341 (2005), 545-548. Zbl 1086.32020, MR 2181391, 10.1016/j.crma.2005.09.018
Reference: [8] Greene, R. E., Krantz, S. G.: Techniques for studying automorphisms of weakly pseudoconvex domains.Several Complex Variables: Proceedings of the Mittag-Leffler Institute, Stockholm, Sweden, 1987/1988 Math. Notes 38 Princeton University Press, Princeton (1993), 389-410 J. E. Fornæss. Zbl 0779.32017, MR 1207869
Reference: [9] Isaev, A. V., Krantz, S. G.: Domains with non-compact automorphism group: a survey.Adv. Math. 146 (1999), 1-38. Zbl 1040.32019, MR 1706680, 10.1006/aima.1998.1821
Reference: [10] Kang, H.: Holomorphic automorphisms of certain class of domains of infinite type.Tohoku Math. J. (2) 46 (1994), 435-442. Zbl 0817.32011, MR 1289190, 10.2748/tmj/1178225723
Reference: [11] Kim, K.-T.: On a boundary point repelling automorphism orbits.J. Math. Anal. Appl. 179 (1993), 463-482. MR 1249831, 10.1006/jmaa.1993.1362
Reference: [12] Kim, K.-T., Krantz, S. G.: Some new results on domains in complex space with non-compact automorphism group.J. Math. Anal. Appl. 281 (2003), 417-424. Zbl 1035.32019, MR 1982663, 10.1016/S0022-247X(03)00003-9
Reference: [13] Kim, K.-T., Krantz, S. G.: Complex scaling and domains with non-compact automorphism group.Ill. J. Math. 45 (2001), 1273-1299. Zbl 1065.32014, MR 1895457, 10.1215/ijm/1258138066
Reference: [14] Landucci, M.: The automorphism group of domains with boundary points of infinite type.Ill. J. Math. 48 (2004), 875-885. Zbl 1065.32016, MR 2114256, 10.1215/ijm/1258131057
Reference: [15] Rosay, J.-P.: Sur une caractérisation de la boule parmi les domaines de {${\mathbb C}^n$} par son groupe d'automorphismes.Ann. Inst. Fourier 29 French (1979), 91-97. MR 0558590, 10.5802/aif.768
Reference: [16] Wong, B.: Characterization of the unit ball in {${\mathbb C}^n$} by its automorphism group.Invent. Math. 41 (1977), 253-257. MR 0492401, 10.1007/BF01403050
.

Files

Files Size Format View
CzechMathJ_65-2015-3_1.pdf 239.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo