Previous |  Up |  Next

Article

Title: On a generalization of a theorem of Burnside (English)
Author: Shi, Jiangtao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 3
Year: 2015
Pages: 587-591
Summary lang: English
.
Category: math
.
Summary: A theorem of Burnside asserts that a finite group $G$ is \mbox {$p$-nilpotent} if for some prime $p$ a Sylow \mbox {$p$-subgroup} of $G$ lies in the center of its normalizer. In this paper, let $G$ be a finite group and $p$ the smallest prime divisor of $|G|$, the order of $G$. Let $P\in {\rm Syl}_p(G)$. As a generalization of Burnside's theorem, it is shown that if every non-cyclic \mbox {$p$-subgroup} of $G$ is self-normalizing or normal in $G$ then $G$ is solvable. In particular, if $P\ncong \langle a,b\vert a^{p^{n-1}}=1,b^2=1, b^{-1}ab=a^{1+{p^{n-2}}}\rangle $, where $n\geq 3$ for $p>2$ and $n\geq 4$ for $p=2$, then $G$ is \mbox {$p$-nilpotent} or \mbox {$p$-closed}. (English)
Keyword: non-cyclic $p$-subgroup
Keyword: $p$-nilpotent
Keyword: self-normalizing subgroup
Keyword: normal subgroup
MSC: 20D10
MSC: 20D20
idZBL: Zbl 06537682
idMR: MR3407595
DOI: 10.1007/s10587-015-0198-x
.
Date available: 2015-10-04T17:59:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144433
.
Reference: [1] Huppert, B.: Endliche Gruppen I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134 Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703
Reference: [2] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80 Springer, New York (1996). MR 1357169
.

Files

Files Size Format View
CzechMathJ_65-2015-3_2.pdf 211.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo