Previous |  Up |  Next

Article

Title: Some infinite sums identities (English)
Author: Jaban, Meher
Author: Bala, Sinha Sneh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 3
Year: 2015
Pages: 819-827
Summary lang: English
.
Category: math
.
Summary: We find the sum of series of the form $$ \sum _{i=1}^{\infty } \frac {f(i)}{i^{r}} $$ for some special functions $f$. The above series is a generalization of the Riemann zeta function. In particular, we take $f$ as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mező's paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of $\pi $. (English)
Keyword: multiple zeta values
Keyword: multiple Hurwitz zeta values
MSC: 11M32
MSC: 11M36
idZBL: Zbl 06537694
idMR: MR3407607
DOI: 10.1007/s10587-015-0210-5
.
Date available: 2015-10-04T18:21:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144445
.
Reference: [1] Mező, I.: Some infinite sums arising from the Weierstrass product theorem.Appl. Math. Comput. 219 (2013), 9838-9846. Zbl 1312.33060, MR 3049605, 10.1016/j.amc.2013.03.122
Reference: [2] Murty, M. R., Sinha, K.: Multiple Hurwitz zeta functions.Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory. Proceedings of the Bretton Woods workshop on multiple Dirichlet series, Bretton Woods, USA, 2005. S. Friedberg et al. Proc. Sympos. Pure Math. 75 American Mathematical Society, Providence (2006), 135-156. Zbl 1124.11046, MR 2279934
.

Files

Files Size Format View
CzechMathJ_65-2015-3_14.pdf 223.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo