Previous |  Up |  Next

Article

Title: Hybrid level set phase field method for topology optimization of contact problems (English)
Author: Myśliński, Andrzej
Author: Koniarski, Konrad
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 4
Year: 2015
Pages: 419-435
Summary lang: English
.
Category: math
.
Summary: The paper deals with the analysis and the numerical solution of the topology optimization of system governed by variational inequalities using the combined level set and phase field rather than the standard level set approach. The standard level set method allows to evolve a given sharp interface but is not able to generate holes unless the topological derivative is used. The phase field method indicates the position of the interface in a blurry way but is flexible in the holes generation. In the paper a two-phase topology optimization problem is formulated in terms of the modified level set function and regularized using the Cahn-Hilliard based interfacial energy term rather than the standard perimeter term. The derivative formulae of the cost functional with respect to the level set function is calculated. Modified reaction-diffusion equation updating the level set function is derived. The necessary optimality condition for this optimization problem is formulated. The finite element and finite difference methods are used to discretize the state and adjoint systems. Numerical examples are provided and discussed. (English)
Keyword: topology optimization
Keyword: unilateral problem
Keyword: level set approach
Keyword: phase field method
MSC: 35J86
MSC: 49K20
MSC: 49Q10
MSC: 49Q12
MSC: 74N20
MSC: 74P10
idZBL: Zbl 06537674
idMR: MR3432543
DOI: 10.21136/MB.2015.144460
.
Date available: 2015-11-17T20:48:35Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144460
.
Reference: [1] Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method.J. Comput. Phys. 194 (2004), 363-393. Zbl 1136.74368, MR 2033390, 10.1016/j.jcp.2003.09.032
Reference: [2] Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations.Applied Mathematical Sciences 147 Springer, New York (2006). Zbl 1110.35001, MR 2244145, 10.1007/978-0-387-44588-5
Reference: [3] Blank, L., Garcke, H., Farshbaf-Shaker, M. Hassan, Styles, V.: Relating phase field and sharp interface approaches to structural topology optimization.ESAIM Control Optim. Calc. Var. 20 (2014), 1025-1058. MR 3264233, 10.1051/cocv/2014006
Reference: [4] Blank, L., Garcke, H., Sarbu, L., Srisupattarawanit, T., Styles, V., Voigt, A.: Phase-field approaches to structural topology optimization.Constrained Optimization and Optimal Control for Partial Differential Equations G. Leugering et al. International Series of Numerical Mathematics 160 Birkhäuser, Basel 245-256 (2012). MR 3060477
Reference: [5] Bourdin, B., Chambolle, A.: The phase-field method in optimal design.M. P. Bendsø{e} et al. IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Status and Perspectives. Proc. of the Conf. Rungstedgaard, Denmark, 2005 Springer, Dordrecht (2006).
Reference: [6] Chan, T. F., Vese, L. A.: Active contours without edges.IEEE Trans. Image Process. 10 (2001), 266-277. Zbl 1039.68779, 10.1109/83.902291
Reference: [7] Choi, J. S., Yamada, T., Izui, K., Nishiwaki, S., Yoo, J.: Topology optimization using a reaction-diffusion equation.Comput. Methods Appl. Mech. Eng. 200 (2011), 2407-2420. Zbl 1230.74151, MR 2803635, 10.1016/j.cma.2011.04.013
Reference: [8] Deaton, J. D., Grandhi, R. V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000.Struct. Multidiscip. Optim. 49 (2014), 1-38. MR 3182450, 10.1007/s00158-013-0956-z
Reference: [9] Droske, M., Ring, W., Rumpf, M.: Mumford-Shah based registration: a comparison of a level set and a phase field approach.Comput. Vis. Sci. 12 (2009), 101-114. MR 2485788, 10.1007/s00791-008-0084-2
Reference: [10] Gain, A. L., Paulino, G. H.: Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation.Struct. Multidiscip. Optim. 46 (2012), 327-342. Zbl 1274.74332, MR 2969787, 10.1007/s00158-012-0781-9
Reference: [11] Haslinger, J., Mäkinen, R. A. E.: Introduction to Shape Optimization. Theory, Approximation, and Computation.Advances in Design and Control 7 SIAM, Philadelphia (2003). Zbl 1020.74001, MR 1969772
Reference: [12] Kronbichler, M., Kreiss, G.: A hybrid level-set-phase-field method for two-phase flow with contact lines.Technical Report 2011-026, University of Uppsala, Department of Information Technology, 2011.
Reference: [13] Myśliński, A.: Phase field approach to topology optimization of contact problems.Proc. of the 10th World Congress on Structural and Multidisciplinary Optimization R. Haftka ISSMO (2013), Paper 5434, 9 pages.
Reference: [14] Myśliński, A.: Shape and topology optimization of elastic contact problems using piecewise constant level set method.Proc. of the 11th International Conf. on Computational Structural Technology B. H. V. Topping Civil-Comp Press Stirlingshire (2012), Paper 233, 12 pages.
Reference: [15] Myśliński, A.: Radial basis function level set method for structural optimization.Control Cybern. 39 (2010), 627-645. Zbl 1283.49052, MR 2791364
Reference: [16] Myśliński, A.: Level set method for shape and topology optimization of contact problems.Eng. Anal. Bound. Elem. 32 (2008), 986-994 System Modeling and Optimization 2009 IFIP Adv. Inf. Commun. Technol. 312 Elsevier, Oxford (2009), pp. 397-410 A. Korytowski et al. MR 2648854, 10.1016/j.enganabound.2007.12.008
Reference: [17] Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces.Applied Mathematical Sciences 153 Springer, New York (2003). Zbl 1026.76001, MR 1939127
Reference: [18] Penzler, P., Rumpf, M., Wirth, B.: A phase-field model for compliance shape optimization in nonlinear elasticity.ESAIM, Control Optim. Calc. Var. 18 (2012), 229-258. Zbl 1251.49054, MR 2887934, 10.1051/cocv/2010045
Reference: [19] Scherer, M., Denzer, R., Steinmann, P.: A fictitious energy approach for shape optimization.Int. J. Numer. Methods Eng. 82 (2010), 269-302. Zbl 1188.74045, MR 2656022, 10.1002/nme.2764
Reference: [20] Sokołowski, J., Żochowski, A.: On topological derivative in shape optimization.Optimal Shape Design and Modelling T. Lewiński et al. Academic Printing House EXIT Warsaw, Poland (2004), 55-143. MR 1691940
Reference: [21] Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization. Shape Sensitivity Analysis.Springer Series in Computational Mathematics 16 Springer, Berlin (1992). Zbl 0761.73003, 10.1007/978-3-642-58106-9_1
Reference: [22] Takezawa, A., Nishiwaki, S., Kitamura, M.: Shape and topology optimization based on the phase field method and sensitivity analysis.J. Comput. Phys. 229 (2010), 2697-2718. Zbl 1185.65109, MR 2586210, 10.1016/j.jcp.2009.12.017
Reference: [23] Dijk, N. P. van, Maute, K., Langelaar, M., Keulen, F. van: Level-set methods for structural topology optimization: a review.Struct. Multidiscip. Optim. 48 (2013), 437-472. MR 3107583, 10.1007/s00158-013-0912-y
Reference: [24] Wallin, M., Ristinmaa, M., Askfelt, H.: Optimal topologies derived from a phase-field method.Struct. Multidiscip. Optim. 45 (2012), 171-183. Zbl 1274.74408, MR 2872841, 10.1007/s00158-011-0688-x
Reference: [25] Yamada, T., Izui, K., Nishiwaki, S., Takezawa, A.: A topology optimization method based on the level set method incorporating a fictitious interface energy.Comput. Methods Appl. Mech. Eng. 199 (2010), 2876-2891. Zbl 1231.74365, MR 2740765, 10.1016/j.cma.2010.05.013
.

Files

Files Size Format View
MathBohem_140-2015-4_5.pdf 335.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo