Full entry |
PDF
(0.2 MB)
Feedback

semigroup; evolution equation; invariant set; Conley index; resonance

References:

[1] Bartolo, P., Benci, V., Fortunato, D.: **Abstract critical point theorems and applications to some nonlinear problems with ``strong'' resonance at infinity**. Nonlinear Anal., Theory Methods Appl. 7 (1983), 981-1012. MR 0713209 | Zbl 0522.58012

[2] Ćwiszewski, A., Rybakowski, K. P.: **Singular dynamics of strongly damped beam equation**. J. Differ. Equations 247 (2009), 3202-3233. DOI 10.1016/j.jde.2009.09.006 | MR 2571574 | Zbl 1187.35002

[3] Henry, D.: **Geometric Theory of Semilinear Parabolic Equations**. Lecture Notes in Mathematics 840 Springer, Berlin (1981). MR 0610244 | Zbl 0456.35001

[4] Kokocki, P.: **The averaging principle and periodic solutions for nonlinear evolution equations at resonance**. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 85 (2013), 253-278. DOI 10.1016/j.na.2013.02.030 | MR 3040364 | Zbl 1292.34059

[5] Kokocki, P.: **Connecting orbits for nonlinear differential equations at resonance**. J. Differ. Equations 255 (2013), 1554-1575. DOI 10.1016/j.jde.2013.05.012 | MR 3072663 | Zbl 1302.34098

[6] Kokocki, P.: **Dynamics of Nonlinear Evolution Equations at Resonance, PhD dissertation**. Nicolaus Copernicus University Toruń (2012).

[7] Kokocki, P.: **Effect of resonance on the existence of peridic solutions for strongly damped wave equation**. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 125 (2015), Article ID 10526, 167-200. DOI 10.1016/j.na.2015.05.012 | MR 3373579

[8] Landesman, E. M., Lazer, A. C.: **Nonlinear perturbations of linear elliptic boundary value problems at resonance**. J. Math. Mech. 19 (1969/1970), 609-623. MR 0267269

[9] Massatt, P.: **Limiting behavior for strongly damped nonlinear wave equations. Nonlinear phenomena in mathematical sciences, Proc. Int. Conf., Arlington/Tex., 1980**. J. Differential Equations 48 (1982), 334-349. DOI 10.1016/0022-0396(83)90098-0 | MR 0702424

[10] Prizzi, M.: **On admissibility for parabolic equations in {$\mathbb R^n$}**. Fundam. Math. 176 (2003), 261-275. DOI 10.4064/fm176-3-5 | MR 1992823

[11] Rybakowski, K. P.: **The Homotopy Index and Partial Differential Equations**. Universitext Springer, Berlin (1987). MR 0910097 | Zbl 0628.58006

[12] Rybakowski, K. P.: **Nontrivial solutions of elliptic boundary value problems with resonance at zero**. Ann. Mat. Pura Appl. (4) 139 (1985), 237-277. MR 0798176 | Zbl 0572.35037