Previous |  Up |  Next

Article

Title: Invariant sets and connecting orbits for nonlinear evolution equations at resonance (English)
Author: Kokocki, Piotr
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 4
Year: 2015
Pages: 447-455
Summary lang: English
.
Category: math
.
Summary: We study the problem of existence of orbits connecting stationary points for the nonlinear heat and strongly damped wave equations being at resonance at infinity. The main difficulty lies in the fact that the problems may have no solutions for general nonlinearity. To address this question we introduce geometrical assumptions for the nonlinear term and use them to prove index formulas expressing the Conley index of associated semiflows. We also prove that the geometrical assumptions are generalizations of the well known Landesman-Lazer and strong resonance conditions. Obtained index formulas are used to derive criteria determining the existence of orbits connecting stationary points. (English)
Keyword: semigroup
Keyword: evolution equation
Keyword: invariant set
Keyword: Conley index
Keyword: resonance
MSC: 35L10
MSC: 35P05
MSC: 37B30
idZBL: Zbl 06537676
idMR: MR3432545
DOI: 10.21136/MB.2015.144462
.
Date available: 2015-11-17T20:50:12Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144462
.
Reference: [1] Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with ``strong'' resonance at infinity.Nonlinear Anal., Theory Methods Appl. 7 (1983), 981-1012. Zbl 0522.58012, MR 0713209
Reference: [2] Ćwiszewski, A., Rybakowski, K. P.: Singular dynamics of strongly damped beam equation.J. Differ. Equations 247 (2009), 3202-3233. Zbl 1187.35002, MR 2571574, 10.1016/j.jde.2009.09.006
Reference: [3] Henry, D.: Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Mathematics 840 Springer, Berlin (1981). Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647
Reference: [4] Kokocki, P.: The averaging principle and periodic solutions for nonlinear evolution equations at resonance.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 85 (2013), 253-278. Zbl 1292.34059, MR 3040364, 10.1016/j.na.2013.02.030
Reference: [5] Kokocki, P.: Connecting orbits for nonlinear differential equations at resonance.J. Differ. Equations 255 (2013), 1554-1575. Zbl 1302.34098, MR 3072663, 10.1016/j.jde.2013.05.012
Reference: [6] Kokocki, P.: Dynamics of Nonlinear Evolution Equations at Resonance, PhD dissertation.Nicolaus Copernicus University Toruń (2012).
Reference: [7] Kokocki, P.: Effect of resonance on the existence of peridic solutions for strongly damped wave equation.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 125 (2015), Article ID 10526, 167-200. MR 3373579, 10.1016/j.na.2015.05.012
Reference: [8] Landesman, E. M., Lazer, A. C.: Nonlinear perturbations of linear elliptic boundary value problems at resonance.J. Math. Mech. 19 (1969/1970), 609-623. MR 0267269
Reference: [9] Massatt, P.: Limiting behavior for strongly damped nonlinear wave equations. Nonlinear phenomena in mathematical sciences, Proc. Int. Conf., Arlington/Tex., 1980.J. Differential Equations 48 (1982), 334-349. MR 0702424, 10.1016/0022-0396(83)90098-0
Reference: [10] Prizzi, M.: On admissibility for parabolic equations in {$\mathbb R^n$}.Fundam. Math. 176 (2003), 261-275. MR 1992823, 10.4064/fm176-3-5
Reference: [11] Rybakowski, K. P.: The Homotopy Index and Partial Differential Equations.Universitext Springer, Berlin (1987). Zbl 0628.58006, MR 0910097
Reference: [12] Rybakowski, K. P.: Nontrivial solutions of elliptic boundary value problems with resonance at zero.Ann. Mat. Pura Appl. (4) 139 (1985), 237-277. Zbl 0572.35037, MR 0798176
.

Files

Files Size Format View
MathBohem_140-2015-4_7.pdf 245.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo