Previous |  Up |  Next


Title: Sum-of-squares based observer design for polynomial systems with a known fixed time delay (English)
Author: Rehák, Branislav
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 856-873
Summary lang: English
Category: math
Summary: An observer for a system with polynomial nonlinearities is designed. The system is assumed to exhibit a time delay whose value is supposed to be constant and known. The design is carried out using the sum-of-squares method. The key point is defining a suitable Lyapunov-Krasovskii functional. The resulting observer is in form of a polynomial in the observable variables. The results are illustrated by two examples. (English)
Keyword: sum-of-squares polynomial
Keyword: observer
Keyword: polynomial system
MSC: 93B51
idZBL: Zbl 06537784
idMR: MR3445988
DOI: 10.14736/kyb-2015-5-0856
Date available: 2015-12-16T19:07:05Z
Last updated: 2018-01-10
Stable URL:
Reference: [1] Alessandri, A.: Observer design for nonlinear systems by using input-to-state stability..In: Proc. 43rd IEEE Conference on Decision and Control, Bahamas 2004, pp. 3892-3897. 10.1109/cdc.2004.1429345
Reference: [2] Ataei, A., Wang, Q.: Non-linear control of an uncertain hypersonic aircraft model using robust sum-of-squares method..IET Control Theory Appl. 6 (2012), 203-215. MR 2932075, 10.1049/iet-cta.2011.0143
Reference: [3] Benabdallah, A.: A separation principle for the stabilization of a class of time delay nonlinear systems..Kybernetika 51 (2015), 99-111. MR 3333835, 10.14736/kyb-2015-1-0099
Reference: [4] Cacace, F., Germani, A., Manes, C.: An observer for a class of nonlinear systems with time varying observation delay..Systems Control Lett. 59 (2010), 305-312. Zbl 1191.93016, MR 2668922, 10.1016/j.sysconle.2010.03.005
Reference: [5] Dong, Y., Liu, J., Mei, S.: Observer design for a class of nonlinear discrete-time systems with time-delay..Kybernetika 49 (2013), 341-358. Zbl 1264.93144, MR 3085400
Reference: [6] Fridman, E., Dambrine, M.: Control under quantization, saturation and delay: An LMI approach..Automatica 45 (2009), 2258-2264. Zbl 1179.93089, MR 2890785, 10.1016/j.automatica.2009.05.020
Reference: [7] Fridman, E., Dambrine, M., Yeganefar, N.: On input-to-state stability of systems with time-delay: A matrix inequalities approach..Automatica 44 (2008), 2364-2369. Zbl 1153.93502, MR 2528178, 10.1016/j.automatica.2008.01.012
Reference: [8] Fridman, E.: Tutorial on Lyapunov-based methods for time-delay systems..European J. Control 20 (2014), 271-283. MR 3283869, 10.1016/j.ejcon.2014.10.001
Reference: [9] Gao, H., Chen, T., Lam, J.: A new delay system approach to network-based control..Automatica 44 (2008), 39-52. Zbl 1138.93375, MR 2530467, 10.1016/j.automatica.2007.04.020
Reference: [10] Germani, A., Manes, C., Pepe, P.: An asymptotic state observer for a class of nonlinear delay systems..Kybernetika 37 (2001), 459-478. Zbl 1265.93029, MR 1859096
Reference: [11] Gu, K., Kharitonov, V. L., Chen, J.: Stability of Time-delay Systems..Birkhäuser, 2003. Zbl 1039.34067, MR 3075002, 10.1007/978-1-4612-0039-0
Reference: [12] Huang, W. Ch., Sun, H. F., Zeng, J. P.: Robust control synthesis of polynomial nonlinear systems using sum of squares technique..Acta Automatica Sinica 39 (2013), 799-805. MR 3154438, 10.1016/s1874-1029(13)60055-5
Reference: [13] Ichihara, H.: Observer design for polynomial systems using convex optimization..In: Proc. 46th IEEE Conference on Decision and Control New Orleans 2007, pp. 5309-5314. 10.1109/cdc.2007.4434155
Reference: [14] Ichihara, H.: Optimal control for polynomial systems using matrix sum of squares relaxations..IEEE Trans. Automat. Control 54 (2009), 1048-1053. MR 2518120, 10.1109/TAC.2009.2017159
Reference: [15] Ito, H., Pepe, P., Jiang, Z.-P.: Construction of Lyapunov-Krasovskii functionals for networks of iISS retarded systems in small-gain formulation..Automatica 49 (2013), 3246-3257. MR 3115794, 10.1016/j.automatica.2013.08.020
Reference: [16] Jarvis-Wloszek, Z. W.: Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-Squares Optimization..PhD Thesis, University of California, Berkeley 2003.
Reference: [17] Kazantzis, N., Wright, R. A.: Nonlinear observer design in the presence of delayed process output measurements..In: Proc. 2003 American Control Conference, Denver 2003, pp. 2120-2125. 10.1109/acc.2003.1243387
Reference: [18] Lam, H. K.: Output-feedback sampled-data polynomial controller for nonlinear systems..Automatica 47 (2011), 2457-2461. Zbl 1228.93077, MR 2886876, 10.1016/j.automatica.2011.08.009
Reference: [19] Lee, Y. S., Moon, Y. S., Kwon, W. H., Park, P.: Delay-dependent robust $H_{\infty}$ control for uncertain systems with a state delay..Automatica 40, (2004), 65-72. Zbl 1046.93015, MR 2143994, 10.1016/j.automatica.2003.07.004
Reference: [20] Löfberg, J.: Pre- and post-processing sum-of-squares programs in practice..IEEE Trans. Automat. Control 54, (2009), 1007-1011. MR 2518113, 10.1109/tac.2009.2017144
Reference: [21] Marquez, H.: Nonlinear Control Systems..John Wiley and Sons, New Jersey 2003. Zbl 1037.93003
Reference: [22] Márquez, L. A., Moog, C., Villa, M. Velasco: Observability and observers for nonlinear systems with time delay..Kybernetika 38 (2002), 445-456. MR 1937139
Reference: [23] Nobuyama, E., Aoyagi, T., Kami, Y.: A Sum of Squares Optimization Approach to Robust Control of Bilinear Systems..In: Recent Advances in Robust Control - Theory and Applications in Robotics and Electromechanics (Dr. Andreas Mueller, ed.), 2011. 10.5772/17576
Reference: [24] Papachristodoulou, A., Peet, M. M., Lall, S.: Analysis of polynomial systems with time delays via the sum of squares decomposition..IEEE Trans. Automat. Control 54 (2009), 1061-1067. MR 2518122, 10.1109/tac.2009.2017168
Reference: [25] Park, P. G., Ko, J. W.: Stability and robust stability for systems with a time-varying delay..Automatica 43 (2007), 1855-1858. Zbl 1120.93043, MR 2572899, 10.1016/j.automatica.2007.02.022
Reference: [26] Peng, C.: Improved delay-dependent stabilisation criteria for discrete systems with a new finite sum inequality..IET Control Theory Appl. 6 (2012), 448-453. MR 2951877, 10.1049/iet-cta.2011.0109
Reference: [27] Prajna, S., Papachristodoulou, A., Wu, F.: Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach..In: 5th Asian Control Conference 2004, pp. 157-165.
Reference: [28] Rehák, B.: Observer design for a polynomial system with time delays via sum-of-squares..In: 6th IEEE International Conference on Cybernetics and Intelligent Systems, Manila and Pico de Loro 2013, pp. 54-59. 10.1109/iccis.2013.6751578
Reference: [29] Rehák, B.: Sum-of-squares based observer design for a polynomial system with unknown time delays..ICCA, Taichung 2014, PP. 479-484. 10.1109/icca.2014.6870967
Reference: [30] Sename, O., Briat, C.: $H_\infty$ observer design for uncertain time-delay systems..In: European Control Conference 2007, Kos 2007, pp. 5123-5130.
Reference: [31] Subbarao, K., Muralidhar, P. C.: A state observer for LTI systems with delayed outputs: Time-varying delay..American Control Conference, Seattle 2008, pp. 3029-3033. 10.1109/acc.2008.4586957
Reference: [32] Teel, A. R., Moreau, L., Nešić, D.: A note on the robustness of input-to-state stability..In: Proc. 40th IEEE Conference on Decision and Control, Orlando 2001, pp. 875-880. 10.1109/cdc.2001.980217
Reference: [33] Theis, J.: Sum-of-Squares Applications in Nonlinear Controller Synthesis..PhD Thesis, University of California, Berkeley 2012.
Reference: [34] Zhao, G., Wang, J.: Reset observers for linear time-varying delay systems: Delay-dependent approach..J. Franklin Institute 351 (2014), 5133-5147. Zbl 1307.93086, MR 3267040, 10.1016/j.jfranklin.2014.08.011
Reference: [35] Zhang, X.-M., Han, Q.-L.: Robust $H_\infty$ filtering for a class of uncertain linear systems with time-varying delay..Automatica 44 (2008), 157-166. Zbl 1138.93058, MR 2530479, 10.1016/j.automatica.2007.04.024
Reference: [36] Zhou, L., Xiao, X., Lu, G.: Observers for a class of nonlinear systems with time delay..Asian J. Control 11 (2009), 688-693. MR 2791315, 10.1002/asjc.150


Files Size Format View
Kybernetika_51-2015-5_9.pdf 565.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo