Previous |  Up |  Next


Title: Output feedback regulation for large-scale uncertain nonlinear systems with time delays (English)
Author: Liu, Shutang
Author: Yu, Weiyong
Author: Zhang, Fangfang
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 874-889
Summary lang: English
Category: math
Summary: This paper is concerned with the problem of global state regulation by output feedback for large-scale uncertain nonlinear systems with time delays in the states and inputs. The systems are assumed to be bounded by a more general form than a class of feedforward systems satisfying a linear growth condition in the unmeasurable states multiplying by unknown growth rates and continuous functions of the inputs or delayed inputs. Using the dynamic gain scaling technique and choosing the appropriate Lyapunov-Krasovskii functionals, we explicitly construct the universal output feedback controllers such that all the states of the closed-loop system are globally bounded and the states of large-scale uncertain systems converge to zero. (English)
Keyword: global regulation
Keyword: large-scale systems
Keyword: output feedback
Keyword: time-delay systems
Keyword: uncertain nonlinear systems
MSC: 34K35
MSC: 62F35
MSC: 93A15
MSC: 93B52
MSC: 93C10
MSC: 93C23
idZBL: Zbl 06537785
idMR: MR3445989
DOI: 10.14736/kyb-2015-5-0874
Date available: 2015-12-16T19:08:22Z
Last updated: 2018-01-10
Stable URL:
Reference: [1] Choi, H.-L., Lim, J.-T.: Stabilisation of non-linear systems with unknown growth rate by adaptive output feedback..Int. J. Systems Sci. 41 (2010), 673-678. Zbl 1194.93178, MR 2662736, 10.1080/00207720903144529
Reference: [2] Guan, W.: Adaptive output feedback control of a class of uncertain nonlinear systems with unknown time delay..Int. J. Systems Sci. 43 (2012), 682-690. MR 2889683, 10.1080/00207721.2010.518252
Reference: [3] Hale, J. K., Lunel, S. M. V.: Introduction to Functional Differential Equations..Springer-Verlag, New York 1993. Zbl 0787.34002, MR 1243878, 10.1007/978-1-4612-4342-7
Reference: [4] Hua, C. C., Wang, Q. G., Guan, X. P.: Memoryless state feedback controller design for time delay systems with matched uncertain nonlinearities..IEEE Trans. Automat. Control 53 (2008), 801-807. MR 2401033, 10.1109/tac.2008.917658
Reference: [5] Jankovic, M.: Control Lyapunov-Razumikhin functions and robust stabilizationof time delay systems..IEEE Trans. Automat. Control 46 (2001), 1048-1060. MR 1842138, 10.1109/9.935057
Reference: [6] Jiao, X., Shen, T. L.: Adaptive feedback control of nonlinear time-delay systems: The Lasalle-Razumikhinbased Approach..IEEE Trans. Automat. Control 50 (2005), 1909-1913. MR 2182750, 10.1109/tac.2005.854652
Reference: [7] Khalil, H. K., Saberi, A.: Adaptive stabilization of a class of nonlinear systems using high-gain feedback..IEEE Trans. Automat. Control 32 (1987), 1031-1035. Zbl 0625.93040, MR 0909974, 10.1109/tac.1987.1104481
Reference: [8] Khalil, H. K.: Nonlinear Systems. Third edition..Prentice Hall, New Jersey 2002.
Reference: [9] Koo, M.-S., Choi, H.-L., Lim, J.-T.: Output feedback regulation of a chain of integrators with an unbounded time-varying delay in the input..IEEE Trans. Automat. Control 57 (2012), 2662-2667. MR 2991671, 10.1109/tac.2012.2190207
Reference: [10] Krishnamurthy, P., Khorrami, F.: A hign-gain scalling technique for adaptive output feedback control of feedforward systems..IEEE Trans. Automat. Control 49 (2004), 2286-2292. MR 2106761, 10.1109/tac.2004.838476
Reference: [11] Krishnamurthy, P., Khorrami, F.: Feedforward systems with iss appended dynamics: adaptive output-feedback stabilization and disturbance attenuation..IEEE Trans. Automat. Control 53 (2008), 405-412. MR 2391599, 10.1109/tac.2007.914231
Reference: [12] Lei, H., Lin, W.: Universal output feedback control of nonlinear systems with unknown growth rate..Automatica 42 (2006), 1783-1789. MR 2249724, 10.1016/j.automatica.2006.05.006
Reference: [13] Lei, H., Lin, W.: Adaptive regulation of uncertain nonlinear systems by output feedback: A universal control approach..Systems Control Lett. 56 (2007), 529-537. Zbl 1118.93026, MR 2332005, 10.1016/j.sysconle.2007.03.002
Reference: [14] Mahmoud, M. S.: Decentralized stabilization of interconnected systems with time-varying delays..IEEE Trans. Automat. Control 54 (2009), 2663-2668. Zbl 1187.93002, MR 2571933, 10.1109/tac.2009.2031572
Reference: [15] Praly, L., Jiang, Z. P.: Linear output feedback with dynamic hign gain for nonlinear systems..Systems Control Lett. 53 (2004), 107-116. MR 2091836, 10.1016/j.sysconle.2004.02.025
Reference: [16] Qian, C. J., Lin, W.: Output feedback control of a class of nonlinear systems: a non-separation principle paradigm..IEEE Transaction on Automatic Control 47 (2002), 1710-1715. MR 1929946, 10.1109/tac.2002.803542
Reference: [17] Sepulchre, R., Jankovie, M., V.Kokotovic, P.: Constructive Nonlinear Control..Springer-Verlag, London 1997. MR 1481435, 10.1007/978-1-4471-0967-9
Reference: [18] Shang, F., Liu, Y. G., Zhang, C. H.: Adaptive output feedback stabilization for a class of nonlinear systems with inherent nonlinearities and uncertainties..Int. J. Robust and Nonlinear Control 21 (2011), 157-176. Zbl 1213.93178, MR 2790231, 10.1002/rnc.1583
Reference: [19] Tong, S. C., Li, Y. M., Zhang, H. G.: Adaptive Neural Network Decentralized Backstepping Output-Feedback Control for Nonlinear Large-Scale Systems With Time Delays.IEEE Trans. Neural Networks 22 (2011), 1073-1086. 10.1109/tnn.2011.2146274
Reference: [20] Wu, H. S.: Decentralised adaptive robust control of uncertain large-scale non-linear dynamical systems with time-varying delays..IET Control Theory and Applications 6 (2012), 629-640. MR 2952986, 10.1049/iet-cta.2011.0015
Reference: [21] Ye, X. D.: Decentralized adaptive stabilization of large-scale nonlinear timedelay systems with unknown high-frequency-gain signs..IEEE Trans. Automat. Control 56 (2011), 1473-1478. MR 2839246, 10.1109/tac.2011.2132270
Reference: [22] Zhang, X. F., Gao, H. Y., Zhang, C. H.: Global asymptotic stabilization of feedforward nonlinear systems with a delay in the input..Int. J. Systems Sci. 37 (2006), 141-148. Zbl 1120.93048, MR 2221459, 10.1080/00207720600566248
Reference: [23] Zhang, X. F., Baron, L., Liu, Q. G., Boukas, E.-K.: Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems..IEEE Trans. Automat. Control 56 (2011), 692-697. MR 2807647, 10.1109/tac.2010.2097150
Reference: [24] Zhang, X. F., Zhang, C. H., Wang, Y. Z.: Decentralized output feedback stabilization for a class of large-scale feedforward nonlinear time-delay systems..Int. J. Robust and Nonlinear Control 24 (2013), 17, 2628-2639. Zbl 1305.93173, MR 3272991, 10.1002/rnc.3013
Reference: [25] Zhang, X. F., Liu, L., Feng, G., Zhang, C. H.: Output feedback control of large-scale nonlinear time-delay systems in lower triangular form..Automatica 49 (2013), 3476-3483. Zbl 1315.93011, MR 3115821, 10.1016/j.automatica.2013.08.026
Reference: [26] Zhang, X., Lin, Y.: Global adaptive stabilisation of feedforward systems by smooth output feedback..IET Control Theory Appl. 6 (2012), 2134-2141. MR 3058455, 10.1049/iet-cta.2011.0501


Files Size Format View
Kybernetika_51-2015-5_10.pdf 379.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo