Previous |  Up |  Next

Article

Title: Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique (English)
Author: Malek, Alaeddin
Author: Hosseinipour-Mahani, Najmeh
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 890-908
Summary lang: English
.
Category: math
.
Summary: In this paper, based on a generalized Karush-Kuhn-Tucker (KKT) method a modified recurrent neural network model for a class of non-convex quadratic programming problems involving a so-called $Z$-matrix is proposed. The basic idea is to express the optimality condition as a mixed nonlinear complementarity problem. Then one may specify conditions for guaranteeing the global solutions of the original problem by using results from the S-lemma. This process is proved by building up a dynamic system from the optimality condition whose equilibrium point is exactly the solution of the mixed nonlinear complementarity problem. By the study of the resulting dynamic system it is shown that under given assumptions, steady states of the dynamic system are stable. Numerical simulations and comparisons with the other methods are presented to illustrate the efficiency of the practical technique that is proposed in this paper. (English)
Keyword: non-convex quadratic optimization
Keyword: recurrent neural network model
Keyword: global optimality conditions
Keyword: global convergence
MSC: 37N40
MSC: 90C26
idZBL: Zbl 06537786
idMR: MR3445990
DOI: 10.14736/kyb-2015-5-0890
.
Date available: 2015-12-16T19:09:57Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144749
.
Reference: [1] Bazaraa, M. S., Shetty, C. M.: Nonlinear Programming Theory and Algorithms..Wiley and Sons, New York 1990. Zbl 1140.90040, MR 0533477
Reference: [2] Beyer, D., Ogier, R.: Tabu learning: A neural network search method for solving nonconvex optimization problems..IEEE Int. Joint Conf. Neural Networks 2 (2000), 953-961.
Reference: [3] Bian, W., Xue, X.: Subgradient-based neural networks for nonsmooth nonconvex optimization problems..IEEE Trans. Neural Networks 20 (2009), 6, 1024-1038. MR 2497796, 10.1109/tnn.2009.2016340
Reference: [4] Chicone, C.: Ordinary Differential Equations with Applications. Second edition..Springer-Verlag, New York 2006. MR 2224508
Reference: [5] Forti, M., Nistri, P., Quincampoix, M.: Convergence of neural networks for programming problems via a nonsmooth Lojasiewicz inequality..IEEE Trans. Neural Networka 17 (2006), 6, 1471-1486. 10.1109/tnn.2006.879775
Reference: [6] Gao, X. B.: A novel neural network for nonlinear convex programming problems..IEEE Trans. Neural Network 15 (2004), 613-621. 10.1109/tnn.2004.824425
Reference: [7] Hu, X.: Neurodynamic optimization: Towards nonconvexity..In: Recurrent Neural Networks ( X. Hu and P. Balasubramaniam, ed.), IN-TECH, 2008, pp. 289-308. 10.5772/5551
Reference: [8] Jeyakumar, V., Rubinov, A. M., Wu, Z. Y.: Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions..Math. Program., Ser. A 110 (2007), 521-541. Zbl 1206.90178, MR 2324960, 10.1007/s10107-006-0012-5
Reference: [9] Jeyakumar, V., Lee, G. M., Li, G. Y.: Alternative theorems for quadratic inequality systems and global quadratic optimization..SIAM J. Optim 20 (2009), 2, 983-1001. Zbl 1197.90315, MR 2534772, 10.1137/080736090
Reference: [10] Jeyakumar, V., Srisatkunarajah, S.: Lagrange multiplier necessary condition for global optimality for non-convex minimization over a quadratic constraint via S-lemma..Optim. Lett. 3 (2009), 23-33. MR 2453502, 10.1007/s11590-008-0088-3
Reference: [11] Khalil, H. K.: Nonlinear Systems. Third edition..Prentice Hall, 2002.
Reference: [12] Malek, A.: Application of recurrent neural networks to optimization problems..In: Recurrent Neural Networks ( X. Hu and P. Balasubramaniam, eds.), IN-TECH, 2008, pp. 255-288. 10.5772/5556
Reference: [13] Malek, A., Alipour, M.: Numerical solution for linear and quadratic programming problems using a recurrent neural network..Appl. Math. Comput 192 (2007), 27-39. Zbl 1193.90164, MR 2385566, 10.1016/j.amc.2007.02.149
Reference: [14] Malek, A., Hosseinipour-Mahani, N., Ezazipour, S.: Efficient recurrent neural network model for the solution of general nonlinear optimization problems..Optimization Methods and Software 25 (2010), 489-506. Zbl 1225.90129, MR 2724153, 10.1080/10556780902856743
Reference: [15] Malek, A., Ezazipour, S., Hosseinipour-Mahani, N.: Double projection neural network for solving pseudomonotone variational inequalities..Fixed Point Theory 12 (2011), 2, 401-418. MR 2895702
Reference: [16] Malek, A., Ezazipour, S., Hosseinipour-Mahani, N.: Projected dynamical systems and optimization problems..Bull. Iranian Math. Soc. 37 (2011), 2, 81-96. Zbl 1253.37091, MR 2890580
Reference: [17] Malek, A., Yari, A.: Primal-dual solution for the linear programming problem using neural network..Appl. Math. Comput. 169 (2005), 198-211. MR 2170909, 10.1016/j.amc.2004.06.081
Reference: [18] Miller, R. K., Michel, A. N.: Ordinary Differential Equations..Academic Press, 1982. Zbl 0552.34001, MR 0660250, 10.1016/b978-0-12-497280-3.50008-6
Reference: [19] Polik, I., Terlaky, T.: A survey of the S-Lemma..SIAM Rev. 49 (2007), 371-418. Zbl 1128.90046, MR 2353804, 10.1137/s003614450444614x
Reference: [20] Sun, C. Y., Feng, C. B.: Neural networks for nonconvex nonlinear programming problems: A switching control approach..In: Lecture Notes in Computer Science 3495, Springer-Verlag, Berlin 2005, pp. 694-699. Zbl 1082.68702, 10.1007/11427391_111
Reference: [21] Tao, Q., Liu, X., Xue, M. S.: A dynamic genetic algorithm based on continuous neural networks for a kind of non-convex optimization problems..Appl. Math. Comput. 150 (2004), 811-820. Zbl 1161.65333, MR 2039677, 10.1016/s0096-3003(03)00309-6
Reference: [22] Tian, Y., Lu, Ch.: Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems.J. Industr. Managment Optim. 7 (2011), 1027-1039. Zbl 1231.90317, MR 2824780, 10.3934/jimo.2011.7.1027
Reference: [23] Xia, Y., Feng, G., Wang, J.: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equation..Neural Networks 17 (2004), 1003-1015. 10.1016/j.neunet.2004.05.006
Reference: [24] Xia, Y. S., Feng, G., Wang, J.: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints..IEEE Trans. Neural Networks 19 (2008), 1340-1353. 10.1109/tnn.2008.2000273
Reference: [25] Xue, X., Bian, W.: A project neural network for solving degenerate convex quadratic program..Neurocomputing 70 (2007), 2449-2459. 10.1016/j.neucom.2006.10.038
Reference: [26] Yan, Z., Wang, J., Li, G.: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization..Neural networks 55 (2014), 20-29. Zbl 1308.90137, 10.1016/j.neunet.2014.03.006
Reference: [27] Yashtini, M., Malek, A.: Solving complementarity and variational inequalities problems using neural networks..Appl. Math. Comput. 190 (2007), 216-230. Zbl 1128.65052, MR 2335442, 10.1016/j.amc.2007.01.036
Reference: [28] Zhang, Y.: Computing a Celis-Dennis-Tapia trust-region step for equality constrained optimization..Math. Programming 55 (1992), 109-124. Zbl 0773.90056, MR 1163297, 10.1007/bf01581194
Reference: [29] Zheng, X. J., Sun, X. L., Li, D., Xu, Y. F.: On zero duality gap in nonconvex quadratic programming problems..Global Optim. 52 (2012), 229-242. Zbl 1266.90151, MR 2886307, 10.1007/s10898-011-9660-y
.

Files

Files Size Format View
Kybernetika_51-2015-5_11.pdf 1.379Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo