Title:
|
Addition theorems for dense subspaces (English) |
Author:
|
Arhangel'skii, A. V. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
56 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
531-541 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study topological spaces that can be represented as the union of a finite collection of dense metrizable subspaces. The assumption that the subspaces are dense in the union plays a crucial role below. In particular, Example 3.1 shows that a paracompact space $X$ which is the union of two dense metrizable subspaces need not be a $p$-space. However, if a normal space $X$ is the union of a finite family $\mu $ of dense subspaces each of which is metrizable by a complete metric, then $X$ is also metrizable by a complete metric (Theorem 2.6). We also answer a question of M.V. Matveev by proving in the last section that if a Lindelöf space $X$ is the union of a finite family $\mu $ of dense metrizable subspaces, then $X$ is separable and metrizable. (English) |
Keyword:
|
dense subspace |
Keyword:
|
perfect space |
Keyword:
|
Moore space |
Keyword:
|
Čech-complete |
Keyword:
|
$p$-space |
Keyword:
|
$\sigma $-disjoint base |
Keyword:
|
uniform base |
Keyword:
|
pseudocompact |
Keyword:
|
point-countable base |
Keyword:
|
pseudo-$\omega _1$-compact |
MSC:
|
54A25 |
MSC:
|
54B05 |
idZBL:
|
Zbl 06537722 |
idMR:
|
MR3434227 |
DOI:
|
10.14712/1213-7243.2015.142 |
. |
Date available:
|
2015-12-17T11:52:47Z |
Last updated:
|
2018-01-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144757 |
. |
Reference:
|
[1] Arhangel'skiĭ A.V.: Some metrization theorems.Uspekhi Mat. Nauk 18 (1963), no. 5, 139–145 (in Russian). MR 0156318 |
Reference:
|
[2] Arhangel'skii A.V.: On a class of spaces containing all metric and all locally compact spaces.Mat. Sb. 67(109) (1965), 55–88; English translation: Amer. Math. Soc. Transl. 92 (1970), 1–39. MR 0190889 |
Reference:
|
[3] Arhangel'skii A.V.: A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces.Comment. Math. Univ. Carolin. 54 (2013), no. 2, 121–139. Zbl 1289.54085, MR 3067699 |
Reference:
|
[4] Arhangel'skii A.V., Choban M.M.: Spaces with sharp bases and with other special bases of countable order.Topology Appl. 159 (2012), no. 5, 1578-1590. Zbl 1245.54025, MR 2891424, 10.1016/j.topol.2011.03.015 |
Reference:
|
[5] Arhangel'skii A.V., Tokgöz S.: Paracompactness and remainders: around Henriksen-Isbell's Theorem.Questions Answers Gen. Topology 32 (2014), 5–15. Zbl 1305.54032, MR 3222525 |
Reference:
|
[6] van Douwen E.K., Tall F., Weiss W.: Non-metrizable hereditarily Lindelöf spaces with point-countable bases from CH.Proc. Amer. Math. Soc. 64 (1977), 139–145. Zbl 0356.54020, MR 0514998 |
Reference:
|
[7] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780 |
Reference:
|
[8] Filippov V.V.: On feathered paracompacta.Dokl. Akad. Nauk SSSR 178 (1968), no. 3, 555–558. Zbl 0167.21103, MR 0227935 |
Reference:
|
[9] Gruenhage G.: Metrizable spaces and generalizations.in: M. Hušek and J. van Mill, Eds., Recent Progress in General Topology, II, North-Holland, Amsterdam, 2002, Chapter 8, pp. 203–221. Zbl 1029.54036, MR 1969999 |
Reference:
|
[10] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces.Topology Appl. 63 (1995), 69–77. Zbl 0864.54001, MR 1328620, 10.1016/0166-8641(95)90009-8 |
Reference:
|
[11] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces, II..Topology Appl. 71 (1996), 179–191. Zbl 0864.54001, MR 1399555, 10.1016/0166-8641(95)00082-8 |
Reference:
|
[12] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number.Topology Appl. 114 (2001), 285–293. Zbl 1012.54002, MR 1838327, 10.1016/S0166-8641(00)00043-2 |
Reference:
|
[13] Kuratowski K.: Topology, vol. 1.PWN, Warszawa, 1966. |
Reference:
|
[14] Michael E.A., Rudin M.E.: Another note on Eberlein compacta.Pacific J. Math. 72 (1977), no. 2, 497–499. MR 0478093, 10.2140/pjm.1977.72.497 |
Reference:
|
[15] Oka S.: Dimension of finite unions of metric spaces.Math. Japon. 24 (1979), 351–362. Zbl 0429.54017, MR 0557465 |
. |