Previous |  Up |  Next

Article

Title: Addition theorems for dense subspaces (English)
Author: Arhangel'skii, A. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 4
Year: 2015
Pages: 531-541
Summary lang: English
.
Category: math
.
Summary: We study topological spaces that can be represented as the union of a finite collection of dense metrizable subspaces. The assumption that the subspaces are dense in the union plays a crucial role below. In particular, Example 3.1 shows that a paracompact space $X$ which is the union of two dense metrizable subspaces need not be a $p$-space. However, if a normal space $X$ is the union of a finite family $\mu $ of dense subspaces each of which is metrizable by a complete metric, then $X$ is also metrizable by a complete metric (Theorem 2.6). We also answer a question of M.V. Matveev by proving in the last section that if a Lindelöf space $X$ is the union of a finite family $\mu $ of dense metrizable subspaces, then $X$ is separable and metrizable. (English)
Keyword: dense subspace
Keyword: perfect space
Keyword: Moore space
Keyword: Čech-complete
Keyword: $p$-space
Keyword: $\sigma $-disjoint base
Keyword: uniform base
Keyword: pseudocompact
Keyword: point-countable base
Keyword: pseudo-$\omega _1$-compact
MSC: 54A25
MSC: 54B05
idZBL: Zbl 06537722
idMR: MR3434227
DOI: 10.14712/1213-7243.2015.142
.
Date available: 2015-12-17T11:52:47Z
Last updated: 2018-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/144757
.
Reference: [1] Arhangel'skiĭ A.V.: Some metrization theorems.Uspekhi Mat. Nauk 18 (1963), no. 5, 139–145 (in Russian). MR 0156318
Reference: [2] Arhangel'skii A.V.: On a class of spaces containing all metric and all locally compact spaces.Mat. Sb. 67(109) (1965), 55–88; English translation: Amer. Math. Soc. Transl. 92 (1970), 1–39. MR 0190889
Reference: [3] Arhangel'skii A.V.: A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces.Comment. Math. Univ. Carolin. 54 (2013), no. 2, 121–139. Zbl 1289.54085, MR 3067699
Reference: [4] Arhangel'skii A.V., Choban M.M.: Spaces with sharp bases and with other special bases of countable order.Topology Appl. 159 (2012), no. 5, 1578-1590. Zbl 1245.54025, MR 2891424, 10.1016/j.topol.2011.03.015
Reference: [5] Arhangel'skii A.V., Tokgöz S.: Paracompactness and remainders: around Henriksen-Isbell's Theorem.Questions Answers Gen. Topology 32 (2014), 5–15. Zbl 1305.54032, MR 3222525
Reference: [6] van Douwen E.K., Tall F., Weiss W.: Non-metrizable hereditarily Lindelöf spaces with point-countable bases from CH.Proc. Amer. Math. Soc. 64 (1977), 139–145. Zbl 0356.54020, MR 0514998
Reference: [7] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [8] Filippov V.V.: On feathered paracompacta.Dokl. Akad. Nauk SSSR 178 (1968), no. 3, 555–558. Zbl 0167.21103, MR 0227935
Reference: [9] Gruenhage G.: Metrizable spaces and generalizations.in: M. Hušek and J. van Mill, Eds., Recent Progress in General Topology, II, North-Holland, Amsterdam, 2002, Chapter 8, pp. 203–221. Zbl 1029.54036, MR 1969999
Reference: [10] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces.Topology Appl. 63 (1995), 69–77. Zbl 0864.54001, MR 1328620, 10.1016/0166-8641(95)90009-8
Reference: [11] Ismail M., Szymanski A.: On the metrizability number and related invariants of spaces, II..Topology Appl. 71 (1996), 179–191. Zbl 0864.54001, MR 1399555, 10.1016/0166-8641(95)00082-8
Reference: [12] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number.Topology Appl. 114 (2001), 285–293. Zbl 1012.54002, MR 1838327, 10.1016/S0166-8641(00)00043-2
Reference: [13] Kuratowski K.: Topology, vol. 1.PWN, Warszawa, 1966.
Reference: [14] Michael E.A., Rudin M.E.: Another note on Eberlein compacta.Pacific J. Math. 72 (1977), no. 2, 497–499. MR 0478093, 10.2140/pjm.1977.72.497
Reference: [15] Oka S.: Dimension of finite unions of metric spaces.Math. Japon. 24 (1979), 351–362. Zbl 0429.54017, MR 0557465
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-4_7.pdf 243.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo