Previous |  Up |  Next

Article

Title: A note on infinite $aS$-groups (English)
Author: Nikandish, Reza
Author: Miraftab, Babak
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 1003-1009
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a group. If every nontrivial subgroup of $G$ has a proper supplement, then $G$ is called an $aS$-group. We study some properties of $aS$-groups. For instance, it is shown that a nilpotent group $G$ is an $aS$-group if and only if $G$ is a subdirect product of cyclic groups of prime orders. We prove that if $G$ is an $aS$-group which satisfies the descending chain condition on subgroups, then $G$ is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an $aS$-group. Finally, it is shown that if $G$ is an $aS$-group and $|G|\neq pq,p$, where $p$ and $q$ are primes, then $G$ has a triple factorization. (English)
Keyword: infinite $aS$-group
Keyword: supplemented subgroup
Keyword: nilpotent group
MSC: 20E15
MSC: 20E34
MSC: 20F18
idZBL: Zbl 06537706
idMR: MR3441331
DOI: 10.1007/s10587-015-0223-0
.
Date available: 2016-01-13T09:14:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144788
.
Reference: [1] Amberg, B.: Triply factorized groups.Groups. Vol. 1 Proc. Int. Conf., St. Andrews/UK 1989, Lond. Math. Soc. Lect. Note Ser. 159 Cambridge Univ. Press, Cambridge (1991), 1-13. Zbl 0732.20014, MR 1123967
Reference: [2] Amberg, B., Kazarin, L.: Factorizations of groups and related topics.Sci. China, Ser. A 52 (2009), 217-230. Zbl 1204.20024, MR 2491722, 10.1007/s11425-009-0024-8
Reference: [3] Ballester-Bolinches, A., Guo, X.: On complemented subgroups of finite groups.Arch. Math. 72 (1999), 161-166. Zbl 0929.20015, MR 1671273, 10.1007/s000130050317
Reference: [4] Chernikov, N. S.: Groups which are factorized by subgroups of finite exponents.Acta Appl. Math. 85 (2005), 81-92. Zbl 1089.20012, MR 2128901, 10.1007/s10440-004-5588-2
Reference: [5] Fuchs, L.: Infinite Abelian Groups. Vol. 1.Pure and Applied Mathematics 36 Academic Press, New York (1970).
Reference: [6] Hall, P.: Complemented groups.J. Lond. Math. Soc. 12 (1937), 201-204. Zbl 0016.39301, MR 1575074, 10.1112/jlms/s1-12.2.201
Reference: [7] Johnson, P. M.: A property of factorizable groups.Arch. Math. 60 (1993), 414-419. Zbl 0783.20016, MR 1213508, 10.1007/BF01202304
Reference: [8] Kappe, L.-C., Kirtland, J.: Supplementation in groups.Glasg. Math. J. 42 (2000), 37-50. Zbl 0945.20016, MR 1739693, 10.1017/S0017089500010065
Reference: [9] Robinson, D. J. S., Stonehewer, S. E.: Triple factorizations by abelian groups.Arch. Math. 60 (1993), 223-232. Zbl 0945.20510, MR 1201635, 10.1007/BF01198805
Reference: [10] Scott, W. R.: Group Theory.Dover Publications, New York (1987). Zbl 0641.20001, MR 0896269
Reference: [11] Suzuki, M.: Group Theory. I.Grundlehren der Mathematischen Wissenschaften 247 Springer, Berlin (1982). Zbl 0472.20001, MR 0648772
.

Files

Files Size Format View
CzechMathJ_65-2015-4_11.pdf 241.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo