Title:
|
A note on infinite $aS$-groups (English) |
Author:
|
Nikandish, Reza |
Author:
|
Miraftab, Babak |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
1003-1009 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a group. If every nontrivial subgroup of $G$ has a proper supplement, then $G$ is called an $aS$-group. We study some properties of $aS$-groups. For instance, it is shown that a nilpotent group $G$ is an $aS$-group if and only if $G$ is a subdirect product of cyclic groups of prime orders. We prove that if $G$ is an $aS$-group which satisfies the descending chain condition on subgroups, then $G$ is finite. Among other results, we characterize all abelian groups for which every nontrivial quotient group is an $aS$-group. Finally, it is shown that if $G$ is an $aS$-group and $|G|\neq pq,p$, where $p$ and $q$ are primes, then $G$ has a triple factorization. (English) |
Keyword:
|
infinite $aS$-group |
Keyword:
|
supplemented subgroup |
Keyword:
|
nilpotent group |
MSC:
|
20E15 |
MSC:
|
20E34 |
MSC:
|
20F18 |
idZBL:
|
Zbl 06537706 |
idMR:
|
MR3441331 |
DOI:
|
10.1007/s10587-015-0223-0 |
. |
Date available:
|
2016-01-13T09:14:08Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144788 |
. |
Reference:
|
[1] Amberg, B.: Triply factorized groups.Groups. Vol. 1 Proc. Int. Conf., St. Andrews/UK 1989, Lond. Math. Soc. Lect. Note Ser. 159 Cambridge Univ. Press, Cambridge (1991), 1-13. Zbl 0732.20014, MR 1123967 |
Reference:
|
[2] Amberg, B., Kazarin, L.: Factorizations of groups and related topics.Sci. China, Ser. A 52 (2009), 217-230. Zbl 1204.20024, MR 2491722, 10.1007/s11425-009-0024-8 |
Reference:
|
[3] Ballester-Bolinches, A., Guo, X.: On complemented subgroups of finite groups.Arch. Math. 72 (1999), 161-166. Zbl 0929.20015, MR 1671273, 10.1007/s000130050317 |
Reference:
|
[4] Chernikov, N. S.: Groups which are factorized by subgroups of finite exponents.Acta Appl. Math. 85 (2005), 81-92. Zbl 1089.20012, MR 2128901, 10.1007/s10440-004-5588-2 |
Reference:
|
[5] Fuchs, L.: Infinite Abelian Groups. Vol. 1.Pure and Applied Mathematics 36 Academic Press, New York (1970). |
Reference:
|
[6] Hall, P.: Complemented groups.J. Lond. Math. Soc. 12 (1937), 201-204. Zbl 0016.39301, MR 1575074, 10.1112/jlms/s1-12.2.201 |
Reference:
|
[7] Johnson, P. M.: A property of factorizable groups.Arch. Math. 60 (1993), 414-419. Zbl 0783.20016, MR 1213508, 10.1007/BF01202304 |
Reference:
|
[8] Kappe, L.-C., Kirtland, J.: Supplementation in groups.Glasg. Math. J. 42 (2000), 37-50. Zbl 0945.20016, MR 1739693, 10.1017/S0017089500010065 |
Reference:
|
[9] Robinson, D. J. S., Stonehewer, S. E.: Triple factorizations by abelian groups.Arch. Math. 60 (1993), 223-232. Zbl 0945.20510, MR 1201635, 10.1007/BF01198805 |
Reference:
|
[10] Scott, W. R.: Group Theory.Dover Publications, New York (1987). Zbl 0641.20001, MR 0896269 |
Reference:
|
[11] Suzuki, M.: Group Theory. I.Grundlehren der Mathematischen Wissenschaften 247 Springer, Berlin (1982). Zbl 0472.20001, MR 0648772 |
. |