Previous |  Up |  Next

Article

Title: On the structure of sequentially Cohen-Macaulay bigraded modules (English)
Author: Majd, Leila Parsaei
Author: Rahimi, Ahad
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 1011-1022
Summary lang: English
.
Category: math
.
Summary: Let $K$ be a field and $S=K[x_1,\ldots ,x_m, y_1,\ldots ,y_n]$ be the standard bigraded polynomial ring over $K$. In this paper, we explicitly describe the structure of finitely generated bigraded ``sequentially Cohen-Macaulay'' $S$-modules with respect to $Q=(y_1,\ldots ,y_n)$. Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to $Q$ in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to $Q$ are considered. (English)
Keyword: dimension filtration
Keyword: sequentially Cohen-Macaulay filtration
Keyword: cohomological dimension
Keyword: bigraded module
Keyword: Cohen-Macaulay module
MSC: 13C14
MSC: 13D45
MSC: 16W50
MSC: 16W70
idZBL: Zbl 06537707
idMR: MR3441332
DOI: 10.1007/s10587-015-0224-z
.
Date available: 2016-01-13T09:15:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144789
.
Reference: [1] Capani, A., Niesi, G., Robbiano, L.: CoCoA, a system for doing Computations in Commutative Algebra.(1995), http://cocoa.dima.unige.it./research/publications.html, 1995.
Reference: [2] Chardin, M., Jouanolou, J.-P., Rahimi, A.: The eventual stability of depth, associated primes and cohomology of a graded module.J. Commut. Algebra 5 (2013), 63-92. Zbl 1275.13014, MR 3084122, 10.1216/JCA-2013-5-1-63
Reference: [3] Cuong, N. T., Cuong, D. T.: On sequentially Cohen-Macaulay modules.Kodai Math. J. 30 (2007), 409-428. Zbl 1139.13011, MR 2372128, 10.2996/kmj/1193924944
Reference: [4] Cuong, N. T., Cuong, D. T.: On the structure of sequentially generalized Cohen-Macaulay modules.J. Algebra 317 (2007), 714-742. Zbl 1137.13010, MR 2362938, 10.1016/j.jalgebra.2007.06.026
Reference: [5] Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry.Graduate Texts in Mathematics 150 Springer, Berlin (1995). Zbl 0819.13001, MR 1322960
Reference: [6] Rahimi, A.: Sequentially Cohen-Macaulayness of bigraded modules.(to appear) in Rocky Mt. J. Math.
Reference: [7] Rahimi, A.: Relative Cohen-Macaulayness of bigraded modules.J. Algebra 323 (2010), 1745-1757. Zbl 1184.13053, MR 2588136, 10.1016/j.jalgebra.2009.11.026
Reference: [8] Schenzel, P.: On the dimension filtration and Cohen-Macaulay filtered modules.Commutative Algebra and Algebraic Geometry. Proc. of the Ferrara Meeting, Italy F. Van Oystaeyen Lecture Notes Pure Appl. Math. 206 Marcel Dekker, New York (1999), 245-264. Zbl 0942.13015, MR 1702109
.

Files

Files Size Format View
CzechMathJ_65-2015-4_12.pdf 264.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo