Previous |  Up |  Next

Article

Title: Singer-Thorpe bases for special Einstein curvature tensors in dimension 4 (English)
Author: Dušek, Zdeněk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 1101-1115
Summary lang: English
.
Category: math
.
Summary: Let $(M,g)$ be a 4-dimensional Einstein Riemannian manifold. At each point $p$ of $M$, the tangent space admits a so-called Singer-Thorpe basis (ST basis) with respect to the curvature tensor $R$ at $p$. In this basis, up to standard symmetries and antisymmetries, just $5$ components of the curvature tensor $R$ are nonzero. For the space of constant curvature, the group ${\rm O}(4)$ acts as a transformation group between ST bases at $T_pM$ and for the so-called 2-stein curvature tensors, the group ${\rm Sp}(1)\subset {\rm SO}(4)$ acts as a transformation group between ST bases. In the present work, the complete list of Lie subgroups of ${\rm SO}(4)$ which act as transformation groups between ST bases for certain classes of Einstein curvature tensors is presented. Special representations of groups ${\rm SO}(2)$, $T^2$, ${\rm Sp}(1)$ or ${\rm U}(2)$ are obtained and the classes of curvature tensors whose transformation group into new ST bases is one of the mentioned groups are determined. (English)
Keyword: Einstein manifold
Keyword: $2$-stein manifold
Keyword: Singer-Thorpe basis
MSC: 53C25
idZBL: Zbl 06537713
idMR: MR3441338
DOI: 10.1007/s10587-015-0230-1
.
Date available: 2016-01-13T09:27:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144795
.
Reference: [1] Carpenter, P., Gray, A., Willmore, T. J.: The curvature of Einstein symmetric spaces.Q. J. Math., Oxf. II. Ser. 33 (1982), 45-64. Zbl 0509.53045, MR 0689850, 10.1093/qmath/33.1.45
Reference: [2] Dušek, Z., Kowalski, O.: Transformations between Singer-Thorpe bases in 4-dimensional Einstein manifolds.Hokkaido Math. J. 44 (2015), 441-458. MR 3532119, 10.14492/hokmj/1470053374
Reference: [3] Euh, Y., Park, J. H., Sekigawa, K.: A generalization of a 4-dimensional Einstein manifold.Math. Slovaca 63 (2013), 595-610. MR 3071978
Reference: [4] Euh, Y., Park, J., Sekigawa, K.: Critical metrics for quadratic functionals in the curvature on 4-dimensional manifolds.Differ. Geom. Appl. 29 (2011), 642-646. Zbl 1228.58010, MR 2831820, 10.1016/j.difgeo.2011.07.001
Reference: [5] Gilkey, P. B.: The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds.ICP Advanced Texts in Mathematics 2 Imperial College, London (2007). Zbl 1128.53041, MR 2351705
Reference: [6] Kowalski, O., Vanhecke, L.: Ball-homogeneous and disk-homogeneous Riemannian manifolds.Math. Z. 180 (1982), 429-444. Zbl 0476.53023, MR 0666999, 10.1007/BF01214716
Reference: [7] Sekigawa, K., Vanhecke, L.: Volume-preserving geodesic symmetries on four-dimensional 2-stein spaces.Kodai Math. J. 9 (1986), 215-224. Zbl 0613.53010, MR 0842869, 10.2996/kmj/1138037204
Reference: [8] Sekigawa, K., Vanhecke, L.: Volume-preserving geodesic symmetries on four-dimensional Kähler manifolds.Differential Geometry, Proc. Second Int. Symp., Peñí scola, Spain, 1985 Lecture Notes in Math. 1209 Springer, Berlin (1986), 275-291 A. M. Naveira et al. Zbl 0605.53031, MR 0863763, 10.1007/BFb0076638
Reference: [9] Singer, I. M., Thorpe, J. A.: The curvature of 4-dimensional Einstein spaces.Global Analysis, Papers in Honor of K. Kodaira Univ. Tokyo Press, Tokyo (1969), 355-365. Zbl 0199.25401, MR 0256303
.

Files

Files Size Format View
CzechMathJ_65-2015-4_18.pdf 279.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo