Title:
|
Singer-Thorpe bases for special Einstein curvature tensors in dimension 4 (English) |
Author:
|
Dušek, Zdeněk |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
1101-1115 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(M,g)$ be a 4-dimensional Einstein Riemannian manifold. At each point $p$ of $M$, the tangent space admits a so-called Singer-Thorpe basis (ST basis) with respect to the curvature tensor $R$ at $p$. In this basis, up to standard symmetries and antisymmetries, just $5$ components of the curvature tensor $R$ are nonzero. For the space of constant curvature, the group ${\rm O}(4)$ acts as a transformation group between ST bases at $T_pM$ and for the so-called 2-stein curvature tensors, the group ${\rm Sp}(1)\subset {\rm SO}(4)$ acts as a transformation group between ST bases. In the present work, the complete list of Lie subgroups of ${\rm SO}(4)$ which act as transformation groups between ST bases for certain classes of Einstein curvature tensors is presented. Special representations of groups ${\rm SO}(2)$, $T^2$, ${\rm Sp}(1)$ or ${\rm U}(2)$ are obtained and the classes of curvature tensors whose transformation group into new ST bases is one of the mentioned groups are determined. (English) |
Keyword:
|
Einstein manifold |
Keyword:
|
$2$-stein manifold |
Keyword:
|
Singer-Thorpe basis |
MSC:
|
53C25 |
idZBL:
|
Zbl 06537713 |
idMR:
|
MR3441338 |
DOI:
|
10.1007/s10587-015-0230-1 |
. |
Date available:
|
2016-01-13T09:27:21Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144795 |
. |
Reference:
|
[1] Carpenter, P., Gray, A., Willmore, T. J.: The curvature of Einstein symmetric spaces.Q. J. Math., Oxf. II. Ser. 33 (1982), 45-64. Zbl 0509.53045, MR 0689850, 10.1093/qmath/33.1.45 |
Reference:
|
[2] Dušek, Z., Kowalski, O.: Transformations between Singer-Thorpe bases in 4-dimensional Einstein manifolds.Hokkaido Math. J. 44 (2015), 441-458. MR 3532119, 10.14492/hokmj/1470053374 |
Reference:
|
[3] Euh, Y., Park, J. H., Sekigawa, K.: A generalization of a 4-dimensional Einstein manifold.Math. Slovaca 63 (2013), 595-610. MR 3071978 |
Reference:
|
[4] Euh, Y., Park, J., Sekigawa, K.: Critical metrics for quadratic functionals in the curvature on 4-dimensional manifolds.Differ. Geom. Appl. 29 (2011), 642-646. Zbl 1228.58010, MR 2831820, 10.1016/j.difgeo.2011.07.001 |
Reference:
|
[5] Gilkey, P. B.: The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds.ICP Advanced Texts in Mathematics 2 Imperial College, London (2007). Zbl 1128.53041, MR 2351705 |
Reference:
|
[6] Kowalski, O., Vanhecke, L.: Ball-homogeneous and disk-homogeneous Riemannian manifolds.Math. Z. 180 (1982), 429-444. Zbl 0476.53023, MR 0666999, 10.1007/BF01214716 |
Reference:
|
[7] Sekigawa, K., Vanhecke, L.: Volume-preserving geodesic symmetries on four-dimensional 2-stein spaces.Kodai Math. J. 9 (1986), 215-224. Zbl 0613.53010, MR 0842869, 10.2996/kmj/1138037204 |
Reference:
|
[8] Sekigawa, K., Vanhecke, L.: Volume-preserving geodesic symmetries on four-dimensional Kähler manifolds.Differential Geometry, Proc. Second Int. Symp., Peñí scola, Spain, 1985 Lecture Notes in Math. 1209 Springer, Berlin (1986), 275-291 A. M. Naveira et al. Zbl 0605.53031, MR 0863763, 10.1007/BFb0076638 |
Reference:
|
[9] Singer, I. M., Thorpe, J. A.: The curvature of 4-dimensional Einstein spaces.Global Analysis, Papers in Honor of K. Kodaira Univ. Tokyo Press, Tokyo (1969), 355-365. Zbl 0199.25401, MR 0256303 |
. |