Title:
|
A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation (English) |
Author:
|
Hu, Xiaohui |
Author:
|
Huang, Pengzhan |
Author:
|
Feng, Xinlong |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
61 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
27-45 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, a new mixed finite element method is used to approximate the solution as well as the flux of the 2D Burgers' equation. Based on this new formulation, we give the corresponding stable conforming finite element approximation for the $P_0^2-P_1$ pair by using the Crank-Nicolson time-discretization scheme. Optimal error estimates are obtained. Finally, numerical experiments show the efficiency of the new mixed method and justify the theoretical results. (English) |
Keyword:
|
Burgers' equation |
Keyword:
|
mixed finite element method |
Keyword:
|
stable conforming finite element |
Keyword:
|
Crank-Nicolson scheme |
Keyword:
|
inf-sup condition |
MSC:
|
35Q30 |
MSC:
|
65B05 |
MSC:
|
65N12 |
MSC:
|
65N30 |
idZBL:
|
Zbl 06562145 |
idMR:
|
MR3455166 |
DOI:
|
10.1007/s10492-016-0120-3 |
. |
Date available:
|
2016-01-19T13:58:42Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144810 |
. |
Reference:
|
[1] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65 Academic Press, New York (1975). Zbl 0314.46030, MR 0450957 |
Reference:
|
[2] Bateman, H.: Some recent researches on motion of fluids.Mon. Weather Rev. 43 (1915), 163-170. 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2 |
Reference:
|
[3] Bressan, N., Quarteroni, A.: An implicit/explicit spectral method for Burgers' equation.Calcolo 23 (1986), 265-284. Zbl 0691.65081, MR 0897632, 10.1007/BF02576532 |
Reference:
|
[4] Cadwell, J., Wanless, P., Cook, A. E.: A finite element approach to Burgers' equation.Appl. Math. Modelling 5 (1981), 189-193. MR 0626869, 10.1016/0307-904X(81)90043-3 |
Reference:
|
[5] Chen, H., Jiang, Z.: A characteristics-mixed finite element method for Burgers' equation.J. Appl. Math. Comput. 15 (2004), 29-51. Zbl 1053.65083, MR 2043967, 10.1007/BF02935745 |
Reference:
|
[6] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174 |
Reference:
|
[7] Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type.Proc. Camb. Philos. Soc. 43 (1947), 50-67 Reprint in Adv. Comput. Math. 6 (1996), 207-226. Zbl 0866.65054, MR 0019410, 10.1017/S0305004100023197 |
Reference:
|
[8] Duan, Y., Liu, R.: Lattice Boltzmann model for two-dimensional unsteady Burgers' equation.J. Comput. Appl. Math. 206 (2007), 432-439. Zbl 1115.76064, MR 2337455, 10.1016/j.cam.2006.08.002 |
Reference:
|
[9] Fletcher, C. A. J.: A comparison of finite element and finite difference solutions of the one- and two-dimensional Burgers' equations.J. Comput. Phys. 51 (1983), 159-188. Zbl 0525.65077, MR 0713944, 10.1016/0021-9991(83)90085-2 |
Reference:
|
[10] He, Y.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations.SIAM J. Numer. Anal. 41 (2003), 1263-1285. Zbl 1130.76365, MR 2034880, 10.1137/S0036142901385659 |
Reference:
|
[11] He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 198 (2009), 1351-1359. Zbl 1227.76031, MR 2497612, 10.1016/j.cma.2008.12.001 |
Reference:
|
[12] He, Y., Sun, W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations.SIAM J. Numer. Anal. 45 (2007), 837-869. Zbl 1145.35318, MR 2300299, 10.1137/050639910 |
Reference:
|
[13] He, Y., Sun, W.: Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations.Math. Comput. 76 (2007), 115-136. Zbl 1129.35004, MR 2261014, 10.1090/S0025-5718-06-01886-2 |
Reference:
|
[14] Hecht, F., Pironneau, O., Hyaric, A. Le, Ohtsuka, K.: FREEFEM++, version 2.3-3, 2008. Software available at http://www.freefem.org.. |
Reference:
|
[15] Heywood, J. G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization.SIAM J. Numer. Anal. 27 (1990), 353-384. Zbl 0694.76014, MR 1043610, 10.1137/0727022 |
Reference:
|
[16] Huang, P., Abduwali, A.: The modified local Crank-Nicolson method for one- and two-dimensional Burgers' equations.Comput. Math. Appl. 59 (2010), 2452-2463. Zbl 1193.65157, MR 2607949, 10.1016/j.camwa.2009.08.069 |
Reference:
|
[17] Johnston, H., Liu, J. G.: Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term.J. Comput. Phys. 199 (2004), 221-259. Zbl 1127.76343, MR 2081004, 10.1016/j.jcp.2004.02.009 |
Reference:
|
[18] Luo, Z., Liu, R.: Mixed finite element analysis and numerical simulation for Burgers equation.Math. Numer. Sin. 21 (1999), 257-268 Chinese. Zbl 0933.65117, MR 1762984 |
Reference:
|
[19] Pany, A. K., Nataraj, N., Singh, S.: A new mixed finite element method for Burgers' equation.J. Appl. Math. Comput. 23 (2007), 43-55. Zbl 1124.65095, MR 2282449, 10.1007/BF02831957 |
Reference:
|
[20] Shang, Y.: Initial-boundary value problems for a class of generalized KdV-Burgers equations.Math. Appl. 9 (1996), 166-171 Chinese. Zbl 0937.35164, MR 1405073 |
Reference:
|
[21] Shao, L., Feng, X., He, Y.: The local discontinuous Galerkin finite element method for Burger's equation.Math. Comput. Modelling 54 (2011), 2943-2954. Zbl 1235.65115, MR 2841837, 10.1016/j.mcm.2011.07.016 |
Reference:
|
[22] Shi, F., Yu, J., Li, K.: A new stabilized mixed finite-element method for Poisson equation based on two local Gauss integrations for linear element pair.Int. J. Comput. Math. 88 (2011), 2293-2305. Zbl 1241.65091, MR 2818083, 10.1080/00207160.2010.534466 |
Reference:
|
[23] Weng, Z., Feng, X., Huang, P.: A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems.Appl. Math. Modelling 36 (2012), 5068-5079. Zbl 1252.65170, MR 2930402, 10.1016/j.apm.2011.12.044 |
. |