Previous |  Up |  Next

Article

Title: A new mixed finite element method based on the Crank-Nicolson scheme for Burgers' equation (English)
Author: Hu, Xiaohui
Author: Huang, Pengzhan
Author: Feng, Xinlong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 1
Year: 2016
Pages: 27-45
Summary lang: English
.
Category: math
.
Summary: In this paper, a new mixed finite element method is used to approximate the solution as well as the flux of the 2D Burgers' equation. Based on this new formulation, we give the corresponding stable conforming finite element approximation for the $P_0^2-P_1$ pair by using the Crank-Nicolson time-discretization scheme. Optimal error estimates are obtained. Finally, numerical experiments show the efficiency of the new mixed method and justify the theoretical results. (English)
Keyword: Burgers' equation
Keyword: mixed finite element method
Keyword: stable conforming finite element
Keyword: Crank-Nicolson scheme
Keyword: inf-sup condition
MSC: 35Q30
MSC: 65B05
MSC: 65N12
MSC: 65N30
idZBL: Zbl 06562145
idMR: MR3455166
DOI: 10.1007/s10492-016-0120-3
.
Date available: 2016-01-19T13:58:42Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144810
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65 Academic Press, New York (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Bateman, H.: Some recent researches on motion of fluids.Mon. Weather Rev. 43 (1915), 163-170. 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
Reference: [3] Bressan, N., Quarteroni, A.: An implicit/explicit spectral method for Burgers' equation.Calcolo 23 (1986), 265-284. Zbl 0691.65081, MR 0897632, 10.1007/BF02576532
Reference: [4] Cadwell, J., Wanless, P., Cook, A. E.: A finite element approach to Burgers' equation.Appl. Math. Modelling 5 (1981), 189-193. MR 0626869, 10.1016/0307-904X(81)90043-3
Reference: [5] Chen, H., Jiang, Z.: A characteristics-mixed finite element method for Burgers' equation.J. Appl. Math. Comput. 15 (2004), 29-51. Zbl 1053.65083, MR 2043967, 10.1007/BF02935745
Reference: [6] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [7] Crank, J., Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type.Proc. Camb. Philos. Soc. 43 (1947), 50-67 Reprint in Adv. Comput. Math. 6 (1996), 207-226. Zbl 0866.65054, MR 0019410, 10.1017/S0305004100023197
Reference: [8] Duan, Y., Liu, R.: Lattice Boltzmann model for two-dimensional unsteady Burgers' equation.J. Comput. Appl. Math. 206 (2007), 432-439. Zbl 1115.76064, MR 2337455, 10.1016/j.cam.2006.08.002
Reference: [9] Fletcher, C. A. J.: A comparison of finite element and finite difference solutions of the one- and two-dimensional Burgers' equations.J. Comput. Phys. 51 (1983), 159-188. Zbl 0525.65077, MR 0713944, 10.1016/0021-9991(83)90085-2
Reference: [10] He, Y.: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations.SIAM J. Numer. Anal. 41 (2003), 1263-1285. Zbl 1130.76365, MR 2034880, 10.1137/S0036142901385659
Reference: [11] He, Y., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 198 (2009), 1351-1359. Zbl 1227.76031, MR 2497612, 10.1016/j.cma.2008.12.001
Reference: [12] He, Y., Sun, W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations.SIAM J. Numer. Anal. 45 (2007), 837-869. Zbl 1145.35318, MR 2300299, 10.1137/050639910
Reference: [13] He, Y., Sun, W.: Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations.Math. Comput. 76 (2007), 115-136. Zbl 1129.35004, MR 2261014, 10.1090/S0025-5718-06-01886-2
Reference: [14] Hecht, F., Pironneau, O., Hyaric, A. Le, Ohtsuka, K.: FREEFEM++, version 2.3-3, 2008. Software available at http://www.freefem.org..
Reference: [15] Heywood, J. G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. IV. Error analysis for second-order time discretization.SIAM J. Numer. Anal. 27 (1990), 353-384. Zbl 0694.76014, MR 1043610, 10.1137/0727022
Reference: [16] Huang, P., Abduwali, A.: The modified local Crank-Nicolson method for one- and two-dimensional Burgers' equations.Comput. Math. Appl. 59 (2010), 2452-2463. Zbl 1193.65157, MR 2607949, 10.1016/j.camwa.2009.08.069
Reference: [17] Johnston, H., Liu, J. G.: Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term.J. Comput. Phys. 199 (2004), 221-259. Zbl 1127.76343, MR 2081004, 10.1016/j.jcp.2004.02.009
Reference: [18] Luo, Z., Liu, R.: Mixed finite element analysis and numerical simulation for Burgers equation.Math. Numer. Sin. 21 (1999), 257-268 Chinese. Zbl 0933.65117, MR 1762984
Reference: [19] Pany, A. K., Nataraj, N., Singh, S.: A new mixed finite element method for Burgers' equation.J. Appl. Math. Comput. 23 (2007), 43-55. Zbl 1124.65095, MR 2282449, 10.1007/BF02831957
Reference: [20] Shang, Y.: Initial-boundary value problems for a class of generalized KdV-Burgers equations.Math. Appl. 9 (1996), 166-171 Chinese. Zbl 0937.35164, MR 1405073
Reference: [21] Shao, L., Feng, X., He, Y.: The local discontinuous Galerkin finite element method for Burger's equation.Math. Comput. Modelling 54 (2011), 2943-2954. Zbl 1235.65115, MR 2841837, 10.1016/j.mcm.2011.07.016
Reference: [22] Shi, F., Yu, J., Li, K.: A new stabilized mixed finite-element method for Poisson equation based on two local Gauss integrations for linear element pair.Int. J. Comput. Math. 88 (2011), 2293-2305. Zbl 1241.65091, MR 2818083, 10.1080/00207160.2010.534466
Reference: [23] Weng, Z., Feng, X., Huang, P.: A new mixed finite element method based on the Crank-Nicolson scheme for the parabolic problems.Appl. Math. Modelling 36 (2012), 5068-5079. Zbl 1252.65170, MR 2930402, 10.1016/j.apm.2011.12.044
.

Files

Files Size Format View
AplMat_61-2016-1_2.pdf 1.960Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo