Previous |  Up |  Next

Article

Title: Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds (English)
Author: Malekzadeh, N.
Author: Abedi, E.
Author: De, U.C.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 1
Year: 2016
Pages: 1-12
Summary lang: English
.
Category: math
.
Summary: In this paper we classify pseudosymmetric and Ricci-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds. (English)
Keyword: pseudosymmetric
Keyword: Ricci-pseudosymmetric
Keyword: Weyl-pseudosymmetric
Keyword: $(\kappa , \mu )$-manifolds
MSC: 53C35
MSC: 53D10
idZBL: Zbl 06562204
idMR: MR3475108
DOI: 10.5817/AM2016-1-1
.
Date available: 2016-02-29T17:48:47Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144833
.
Reference: [1] Belkhelfa, M., Deszcz, R., Verstraelen, L.: Symmetry properties of Sasakian space forms.Soochow J. Math. 31 (2005), 611–616. Zbl 1087.53021, MR 2190204
Reference: [2] Blair, D.E.: Contact manifolds in Riemannian geometry.Lecture Notes in Math., Springer–Verlag, Berlin, 1976. Zbl 0319.53026, MR 0467588
Reference: [3] Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition.Israel J. Math. 91 (1995), 57–65. Zbl 0837.53038, MR 1348312, 10.1007/BF02761646
Reference: [4] Calvaruso, G.: Conformally flat pseudo–symmetric spaces of constant type.Czechoslovak Math. J. 56 (2006), 649–657. Zbl 1164.53339, MR 2291764, 10.1007/s10587-006-0045-1
Reference: [5] Chaki, M.C., Chaki, B.: On pseudosymmetric manifolds admitting a type of semisymmetric connection.Soochow J. Math. 13 (1987), 1–7. MR 0924340
Reference: [6] Cho, J.T., Inoguchi, J.-I.: Pseudo–symmetric contact 3–manifolds.J. Korean Math. Soc. 42 (2005), 913–932. Zbl 1081.53018, MR 2157352, 10.4134/JKMS.2005.42.5.913
Reference: [7] Cho, J.T., Inoguchi, J.–I., Lee, J.–E.: Pseudo–symmetric contact 3–manifolds. III.Colloq. Math. 114 (2009), 77–98. Zbl 1163.53017, MR 2457280, 10.4064/cm114-1-7
Reference: [8] Defever, F., Deszcz, R., Verstraelen, L.: On pseudosymmetric para–Kähler manifolds.Colloq. Math. 74 (1997), 253–260. Zbl 0903.53025, MR 1477567, 10.4064/cm-74-2-253-260
Reference: [9] Defever, F., Deszcz, R., Verstraelen, L., Vrancken, L.: On pseudosymmetric spacetimes.J. Math. Phys. 35 (1994), 5908–5921. MR 1299927, 10.1063/1.530718
Reference: [10] Deszcz, R.: On Ricci–pseudo–symmetric warped products.Demonstratio Math. 22 (1989), 1053–1065. Zbl 0707.53020, MR 1077121
Reference: [11] Deszcz, R.: On pseudosymmetric spaces.Bull. Soc. Math. Belg. Sér. A 44 (1992), 1–34. Zbl 0808.53012, MR 1315367
Reference: [12] Gouli-Andreou, F., Moutafi, E.: Two classes of pseudosymmetric contact metric 3–manifolds.Pacific J. Math. 239 (2009), 17–37. Zbl 1155.53045, MR 2449009, 10.2140/pjm.2009.239.17
Reference: [13] Gouli–Andreou, F., Moutafi, E.: Three classes of pseudosymmetric contact metric 3–manifolds.Pacific J. Math. 245 (2010), 57–77. Zbl 1186.53043, MR 2602682, 10.2140/pjm.2010.245.57
Reference: [14] Hashimoto, N., Sekizawa, M.: Three-dimensional conformally flat pseudo–symmetric spaces of constant type.Arch. Math. (Brno) 36 (2000), 279–286. Zbl 1054.53060, MR 1811172
Reference: [15] Kowalski, O., Sekizawa, M.: Local isometry classes of Riemannian 3–manifolds with constant Ricci eigenvalues $\rho _1 = \rho _ 2\ne \rho _ 3$.Arch. Math. (Brno) 32 (1996), 137–145. MR 1407345
Reference: [16] Kowalski, O., Sekizawa, M.: Three–dimensional Riemannian manifolds of c–conullity two.World Scientific (Singapore–New Jersey–London–Hong Kong) (1996), Published as Chapter 11 in Monograph E. Boeckx, O. Kowalski, L. Vanhecke, Riemannian Manifolds of Conullity Two.
Reference: [17] Kowalski, O., Sekizawa, M.: Pseudo–symmetric spaces of constant type in dimension three–elliptic spaces.Rend. Mat. Appl. (7) 17 (1997), 477–512. Zbl 0889.53026, MR 1608724
Reference: [18] Kowalski, O., Sekizawa, M.: Pseudo–symmetric spaces of constant type in dimension three–non–elliptic spaces.Bull. Tokyo Gakugei Univ. (4) 50 (1998), 1–28. Zbl 0945.53020, MR 1656076
Reference: [19] Ogiue, K.: On almost contact manifolds admitting axiom of planes or axiom of free mobility.Kodai Math. Sem. Rep. 16 (1964), 223–232. Zbl 0136.18003, MR 0172223, 10.2996/kmj/1138844949
Reference: [20] O’Neill, B.: Semi–Riemannian Geometry.Academic Press New York, 1983. Zbl 0531.53051, MR 0719023
Reference: [21] Özgür, C.: On Kenmotsu manifolds satisfying certain pseudosymmetric conditions.World Appl. Sci. J. 1 (2006), 144–149.
Reference: [22] Papantoniou, B.J.: Contact Riemannian manifolds satifying $R(\xi , X)\cdot R = 0$ and $ \xi \in (\kappa , \mu )$–nullity distribution.Yokohama Math. J. 40 (1993), 149–161. MR 1216349
Reference: [23] Prakasha, D.G., Bagewadi, C.S., Basavarajappa, N.S.: On pseudosymmetric Lorentzian $\alpha $–Sasakian manifolds.Int. J. Pure Appl. Math. 48 (2008), 57–65. Zbl 1155.53019, MR 2456434
Reference: [24] Szabó, Z.I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$. I. The local version.J. Differential Geom. 17 (1982), 531–582. MR 0683165, 10.4310/jdg/1214437486
Reference: [25] Szabó, Z.I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$. II. Global versions.Geom. Dedicata 19 (1) (1985), 65–108. MR 0797152, 10.1007/BF00233102
Reference: [26] Tanno, S.: Ricci curvatures of contact Riemannian manifolds.Tohoku Math. J. 40 (1988), 441–448. Zbl 0655.53035, MR 0957055, 10.2748/tmj/1178227985
.

Files

Files Size Format View
ArchMathRetro_052-2016-1_1.pdf 508.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo