Title:
|
Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds (English) |
Author:
|
Malekzadeh, N. |
Author:
|
Abedi, E. |
Author:
|
De, U.C. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
1-12 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we classify pseudosymmetric and Ricci-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds. (English) |
Keyword:
|
pseudosymmetric |
Keyword:
|
Ricci-pseudosymmetric |
Keyword:
|
Weyl-pseudosymmetric |
Keyword:
|
$(\kappa , \mu )$-manifolds |
MSC:
|
53C35 |
MSC:
|
53D10 |
idZBL:
|
Zbl 06562204 |
idMR:
|
MR3475108 |
DOI:
|
10.5817/AM2016-1-1 |
. |
Date available:
|
2016-02-29T17:48:47Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144833 |
. |
Reference:
|
[1] Belkhelfa, M., Deszcz, R., Verstraelen, L.: Symmetry properties of Sasakian space forms.Soochow J. Math. 31 (2005), 611–616. Zbl 1087.53021, MR 2190204 |
Reference:
|
[2] Blair, D.E.: Contact manifolds in Riemannian geometry.Lecture Notes in Math., Springer–Verlag, Berlin, 1976. Zbl 0319.53026, MR 0467588 |
Reference:
|
[3] Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition.Israel J. Math. 91 (1995), 57–65. Zbl 0837.53038, MR 1348312, 10.1007/BF02761646 |
Reference:
|
[4] Calvaruso, G.: Conformally flat pseudo–symmetric spaces of constant type.Czechoslovak Math. J. 56 (2006), 649–657. Zbl 1164.53339, MR 2291764, 10.1007/s10587-006-0045-1 |
Reference:
|
[5] Chaki, M.C., Chaki, B.: On pseudosymmetric manifolds admitting a type of semisymmetric connection.Soochow J. Math. 13 (1987), 1–7. MR 0924340 |
Reference:
|
[6] Cho, J.T., Inoguchi, J.-I.: Pseudo–symmetric contact 3–manifolds.J. Korean Math. Soc. 42 (2005), 913–932. Zbl 1081.53018, MR 2157352, 10.4134/JKMS.2005.42.5.913 |
Reference:
|
[7] Cho, J.T., Inoguchi, J.–I., Lee, J.–E.: Pseudo–symmetric contact 3–manifolds. III.Colloq. Math. 114 (2009), 77–98. Zbl 1163.53017, MR 2457280, 10.4064/cm114-1-7 |
Reference:
|
[8] Defever, F., Deszcz, R., Verstraelen, L.: On pseudosymmetric para–Kähler manifolds.Colloq. Math. 74 (1997), 253–260. Zbl 0903.53025, MR 1477567, 10.4064/cm-74-2-253-260 |
Reference:
|
[9] Defever, F., Deszcz, R., Verstraelen, L., Vrancken, L.: On pseudosymmetric spacetimes.J. Math. Phys. 35 (1994), 5908–5921. MR 1299927, 10.1063/1.530718 |
Reference:
|
[10] Deszcz, R.: On Ricci–pseudo–symmetric warped products.Demonstratio Math. 22 (1989), 1053–1065. Zbl 0707.53020, MR 1077121 |
Reference:
|
[11] Deszcz, R.: On pseudosymmetric spaces.Bull. Soc. Math. Belg. Sér. A 44 (1992), 1–34. Zbl 0808.53012, MR 1315367 |
Reference:
|
[12] Gouli-Andreou, F., Moutafi, E.: Two classes of pseudosymmetric contact metric 3–manifolds.Pacific J. Math. 239 (2009), 17–37. Zbl 1155.53045, MR 2449009, 10.2140/pjm.2009.239.17 |
Reference:
|
[13] Gouli–Andreou, F., Moutafi, E.: Three classes of pseudosymmetric contact metric 3–manifolds.Pacific J. Math. 245 (2010), 57–77. Zbl 1186.53043, MR 2602682, 10.2140/pjm.2010.245.57 |
Reference:
|
[14] Hashimoto, N., Sekizawa, M.: Three-dimensional conformally flat pseudo–symmetric spaces of constant type.Arch. Math. (Brno) 36 (2000), 279–286. Zbl 1054.53060, MR 1811172 |
Reference:
|
[15] Kowalski, O., Sekizawa, M.: Local isometry classes of Riemannian 3–manifolds with constant Ricci eigenvalues $\rho _1 = \rho _ 2\ne \rho _ 3$.Arch. Math. (Brno) 32 (1996), 137–145. MR 1407345 |
Reference:
|
[16] Kowalski, O., Sekizawa, M.: Three–dimensional Riemannian manifolds of c–conullity two.World Scientific (Singapore–New Jersey–London–Hong Kong) (1996), Published as Chapter 11 in Monograph E. Boeckx, O. Kowalski, L. Vanhecke, Riemannian Manifolds of Conullity Two. |
Reference:
|
[17] Kowalski, O., Sekizawa, M.: Pseudo–symmetric spaces of constant type in dimension three–elliptic spaces.Rend. Mat. Appl. (7) 17 (1997), 477–512. Zbl 0889.53026, MR 1608724 |
Reference:
|
[18] Kowalski, O., Sekizawa, M.: Pseudo–symmetric spaces of constant type in dimension three–non–elliptic spaces.Bull. Tokyo Gakugei Univ. (4) 50 (1998), 1–28. Zbl 0945.53020, MR 1656076 |
Reference:
|
[19] Ogiue, K.: On almost contact manifolds admitting axiom of planes or axiom of free mobility.Kodai Math. Sem. Rep. 16 (1964), 223–232. Zbl 0136.18003, MR 0172223, 10.2996/kmj/1138844949 |
Reference:
|
[20] O’Neill, B.: Semi–Riemannian Geometry.Academic Press New York, 1983. Zbl 0531.53051, MR 0719023 |
Reference:
|
[21] Özgür, C.: On Kenmotsu manifolds satisfying certain pseudosymmetric conditions.World Appl. Sci. J. 1 (2006), 144–149. |
Reference:
|
[22] Papantoniou, B.J.: Contact Riemannian manifolds satifying $R(\xi , X)\cdot R = 0$ and $ \xi \in (\kappa , \mu )$–nullity distribution.Yokohama Math. J. 40 (1993), 149–161. MR 1216349 |
Reference:
|
[23] Prakasha, D.G., Bagewadi, C.S., Basavarajappa, N.S.: On pseudosymmetric Lorentzian $\alpha $–Sasakian manifolds.Int. J. Pure Appl. Math. 48 (2008), 57–65. Zbl 1155.53019, MR 2456434 |
Reference:
|
[24] Szabó, Z.I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$. I. The local version.J. Differential Geom. 17 (1982), 531–582. MR 0683165, 10.4310/jdg/1214437486 |
Reference:
|
[25] Szabó, Z.I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$. II. Global versions.Geom. Dedicata 19 (1) (1985), 65–108. MR 0797152, 10.1007/BF00233102 |
Reference:
|
[26] Tanno, S.: Ricci curvatures of contact Riemannian manifolds.Tohoku Math. J. 40 (1988), 441–448. Zbl 0655.53035, MR 0957055, 10.2748/tmj/1178227985 |
. |